Scalable Carbon Nanotube/Platinum Nanoparticle Composite Inks from Salt Templates for Oxygen Reduction Reaction Electrocatalysis for PEM Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pt Nanoparticle/CNT Nanocomposite Ink Synthesis
2.2. Scanning Electron Microscopy (SEM)
2.3. X-ray Diffractometry (XRD)
2.4. Raman Spectroscopy
2.5. Electrochemical Characterization
3. Results and Discussion
3.1. Pt Nanoparticle/CNT Ink Sythesis Scheme
3.2. Structural Characterization of PtNP/CNT Nanocomposite
3.2.1. Scanning Electron Microscopy (SEM)
3.2.2. X-ray Diffractometry
3.2.3. Raman Spectroscopy
3.3. Electrochemical Characterization and Performance of the PtNP/CNT Nanocomposite Inks
3.3.1. Electrochemical Impedance Spectroscopy
3.3.2. Cyclic Voltammetry
3.3.3. Linear Sweep Voltammetry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jiao, M.; Lu, L.; Barkholtz, H.M.; Li, Y.; Wang, Y.; Jiang, L.; Wu, Z.; Liu, D.; Zhang, L.; et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 15938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajala, T.; Kronberg, R.; Backhouse, R.; Buan, M.E.M.; Tripathi, M.; Zitolo, A.; Jiang, H.; Laasonen, K.; Susi, T.; Jaouen, F.; et al. A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution. Appl. Catal. B Environ. 2020, 265, 1–12. [Google Scholar] [CrossRef]
- Sonkar, P.K.; Prakash, K.; Yadav, M.; Ganesan, V.; Sankar, M.; Gupta, R.; Yadav, D.K. Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: An approach for fuel cell improvement. J. Mater. Chem. A 2017, 5, 6263. [Google Scholar] [CrossRef]
- Vincent, I.; Bessarabov, D. Electrochemical Characterization and Oxygen Reduction Kinetics of Cu-incorporated Cobalt Oxide Catalyst. Int. J. Electrochem. Sci. 2016, 11, 8002–8015. [Google Scholar] [CrossRef]
- Jahan, M.; Bao, Q.; Loh, K.P. Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713. [Google Scholar] [CrossRef]
- Yang, J.; Ganesan, P.; Ishihara, A.; Nakashima, N. Carbon Nanotube-based Non-precious Metal Electrode Catalysts for Fuel Cells, Water Splitting and Zinc-air Batteries. Chem. Cat. Chem. 2019, 11, 5929–5944. [Google Scholar] [CrossRef]
- Taylor, A.D.; Kim, E.Y.; Humes, V.P.; Kizuka, J.; Thompson, L.T. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power Sources 2007, 171, 101–106. [Google Scholar] [CrossRef]
- Hakolal, L.; Parra Puerto, A.; Varri, A.; Maaninen, T.; Kucernak, A.; Viik, S.; Smolander, M. Anode ink formulation for a fully printed flexible fuel cell stack. Flex. Print. Electron. 2020, 5, 1–12. [Google Scholar]
- Gupta, C.; Maheshwari, P.H.; Dhakate, S.R. Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst. Mater. Renew. Sustain. Energy 2016, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wie, F.; Idrobo, J.C.; Pennycook, S.J.; Dai, H. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y. Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite. J. Am. Chem. Sec. 2012, 134, 12326–12329. [Google Scholar] [CrossRef]
- Tang, H.; Chen, J.H.; Huang, Z.P.; Wang, D.Z.; Ren, Z.F.; Nie, L.H.; Kuang, Y.F.; Yao, S.Z. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 2004, 1, 191–197. [Google Scholar] [CrossRef]
- Tian, J.; Wu, W.; Tang, Z.; Wu, Y.; Burns, R.; Tichnell, B.; Liu, Z.; Chen, S. Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd-Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets. Catalysts 2018, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Che, G.L.; Lakshmi, B.B.; Fisher, E.R.; Martin, C.R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393, 346–349. [Google Scholar] [CrossRef]
- Chai, G.S.; Yoon, S.B.; Yu, J.-S.; Choi, J.-H.; Sung, Y.-E.J. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Phys. Chem. B 2004, 108, 7074–7079. [Google Scholar] [CrossRef]
- Bessel, C.A.; Laubernds, K.; Rodriguez, N.M.; Baker, R.T. Graphite Nanofibers as an Electrode for Fuel Cell Applications. J. Phys. Chem. B 2001, 105, 1115–1118. [Google Scholar] [CrossRef]
- Vinodgopal, K.; Haria, M.; Meisel, D.; Kamat, P. Fullerene-Based Carbon Nanostructures for Methanol Oxidation. Nano Lett. 2004, 4, 415–418. [Google Scholar] [CrossRef]
- Yang, R.; Qiu, X.; Zhang, H.; Zhu, W.; Wang, Z.; Huang, X.; Chen, L. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 2005, 43, 11–16. [Google Scholar] [CrossRef]
- Li, W.; Liang, C.; Qiu, J.; Zhou, W.; Han, H.; Wei, Z.; Sun, G.; Xin, Q. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 2002, 40, 791–794. [Google Scholar] [CrossRef]
- Cui, H.-F.; Ye, J.-S.; Zhang, W.-D.; Wang, J.; Sheu, F.-S. Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode. J. Electroanal. Chem. 2005, 577, 295–302. [Google Scholar] [CrossRef]
- Song, C.-H.; Park, J.-S. Effect of Dispersion Solvents in Catalyst Inks on the Performance and Durability of Catalyst Layers in Proton Exchange Membrane Fuel Cells. Energies 2019, 12, 549. [Google Scholar] [CrossRef] [Green Version]
- Norskov, J.K.; Rossmeisel, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B. 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, J.; Zhang, G.; Wei, Q.; Chenitz, R.; Claverie, J.R.; Sun, S. Ultrathin Carbon-Coated Pt/Carbon Nanotubes: A Highly Durable Electrocatalyst for Oxygen Reduction. Chem. Mater. 2017, 29, 9579–9587. [Google Scholar] [CrossRef]
- Wang, R.; Dong, X.-Y.; Du, J.; Zhao, J.-Y.; Zang, S.-Q. MOF-Derived Bifunctional Cu3P Nanoparticles Coated by a N,P-Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction. Adv. Mater. 2017, 30, 1703711. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, S.; Wang, C.; Nie, Z.; Liu, J.; Wang, Y.; Lin, Y. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J. Power Sources 2010, 195, 4600–4605. [Google Scholar] [CrossRef]
- Kou, R.; Shao, Y.; Wang, D.; Engelhard, M.H.; Kwak, J.H.; Wang, J.; Viswanathan, V.V.; Wang, C.; Lin, Y.; Wang, Y.; et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11, 954–957. [Google Scholar] [CrossRef]
- Viva, F.A.; Bruno, M.M.; Franceschini, E.A.; Thomas, Y.R.J.; Ramos Sanchez, G.; Solorza-Feria, O.; Corti, H.R. Mesoporous carbon as Pt support for PEM fuel cell. Int. J. Hydrogen Energy 2014, 39, 8821–8826. [Google Scholar] [CrossRef]
- Pei, K.; Banham, D.; Feng, F.; Furstenhaupt, T.; Ye, S.; Birss, V. Oxygen reduction activity dependence on the mesoporous structure of imprinted carbon supports. Electrochem. Commun. 2010, 12, 1666–1669. [Google Scholar] [CrossRef]
- Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P. Single-Wall Carbon Nanotubes Supported Platinum Nanoparticles with Improved Electrocatalytic Activity for Oxygen Reduction Reaction. Langmuir 2006, 22, 2392–2396. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, X.; Hin, J.N.; Wang, H.; Friedrich, K.A.; Schulze, M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. Power Sources 2009, 194, 588–600. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.; Liu, Y.; Shen, G.; Yu, R. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 2006, 21, 1125–1131. [Google Scholar] [CrossRef]
- Biener, J.; Wittstock, A.; Baumann, T.; Weissmuller, J.; Baumer, M.; Hamza, A.V. Surface Chemistry in Nanoscale Materials. Materials 2009, 2, 2404–2428. [Google Scholar] [CrossRef]
- Lin, Y.; Cui, X.; Yen, C.; Wai, C.M. Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells. J. Phys. Chem. B 2005, 109, 14410–14415. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hyung, J.P.; Kabir, S.; Neyerlin, K.C.; Kariuki, N.N.; Lv, H.; Stamenkovic, V.R.; Myers, D.J.; Ulsh, M.; Mauger, S.A. Impact of Catalyst Ink Dispersing Methodology on Fuel Cell Performance Using in-Situ X-ray Scattering. ACS Appl. Energy Mater. 2019, 2, 6417–6427. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; Winter, S.J.; McClure, J.P.; Bartolucci, S.F.; Burns, A.R.; O’Brien, S.F. Salt-Templated Hierarchically Porous Platinum Macrotube Synthesis. Chem. Sel. 2018, 3, 4542–4546. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; McClure, J.P.; Bartolucci, S.F.; Bui, J.; Losch, A.R. Salt-templated Cu-Pt Alloy Macrotubes. Catalysts 2019, 9, 662. [Google Scholar] [CrossRef] [Green Version]
- Burpo, F.J.; Nagelli, E.A.; Morris, L.A.; Woronowicz, K.; Mitropoulos, A.N. Salt-Mediated Au-Cu Nanofoam and Au-Cu-Pd Porous Macrobeam Synthesis. Molecules 2018, 23, 1701. [Google Scholar] [CrossRef] [Green Version]
- Burpo, F.J.; Losch, A.R.; Nagelli, E.A.; Winter, S.J.; Bartolucci, S.F.; McClure, J.P.; Baker, D.R.; Bui, J.K.; Burns, A.R.; O’Brien, S.F.; et al. Salt-Templated Synthesis Method for Porous Platinum-based Macrobeams and Macrotubes. J. Vis. Exp. 2020, 159, e61395. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; Bartolucci, S.F.; Mitropoulos, A.N.; McClure, J.P.; Baker, D.R.; Losch, A.R.; Chu, D. Salt-Templated Platinum-Palladium Porous Macrobeam Synthesis. MRS Commun. 2019, 9, 280–287. [Google Scholar] [CrossRef]
- Magnus, G. Über Einige Neue Verbindungen des Platinchlörures. Pogg. Ann. 1828, 14, 239–242. [Google Scholar]
- Magnus, G. Ann. Chem. Phys. 1828, 2, 110. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k6569192f/f113.item (accessed on 7 October 2020).
- Shinozaki, K.; Zack, J.W.; Pylypenko, S.; Pivovar, B.S.; Kocha, S.S. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness. J. Electrochem. Soc. 2015, 162, F1384–F1396. [Google Scholar] [CrossRef]
- Krishnamurthy, B.; Deepalochani, S. Performance of Platinum Black and Supported Platinum Catalysts in a Direct Methanol Fuel Cell. Int. J. Electrochem. Sci. 2009, 4, 386–395. [Google Scholar]
- Rasband, W.S. Image U.S. National Institutes of Health, Bethesda, Maryland, USA. 1997–2018. Available online: https://imagej.nih.gov/ij/ (accessed on 7 October 2020).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wu, J.; Hinds, B.J. Catalytic activity of ultrathin Pt films on aligned carbon nanotube arrays. Carbon 2011, 49, 1145–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, R.A.; Hashimoto, T.; Thompson, G.E.; Rangel, C.M. Characterization of MEA degradation for an open air cathode PEM fuel cell. Int. J. Hydrog. 2012, 37, 7299–7308. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Li, J.; Wang, H.J.; Yuan, X.Z.; Pan, M. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences and mitigation strategies. J. Power Sources 2012, 205, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.Z.; Li, H.; Zhang, S.S.; Martin, J.; Wang, H.J. A review of polymer electrolyte membrane fuel cell durability test protocols. J. Power Sources 2011, 22, 9107–9116. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.W.; Waje, M.; Li, W.Z.; Yan, Y.S. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions. Angew. Chem. 2007, 119, 4138–4141. [Google Scholar] [CrossRef]
- Malarda, L.M.; Pimentaa, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kumari, S.; Kumar, R.; Teotia, S.; Pratap Singh, B.; Pratap Singh, A.; Dhawan, S.K.; Dhakate, S.R. Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2016, 8, 10600–10608. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Dhakate, S.R.; Gupta, T.; Saini, P.; Singh, B.P.; Mathur, R.B. Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 2013, 1, 5727–5735. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Souza Filho, A.G.; Saaito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil Trans. R. Soc. A 2010, 368, 5355–5377. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Wen, J.; Jayaramb, S.H.; Wang, X.; Chen, S. Electrochemical characterization and equivalent circuit modeling of single-walled carbon nanotube (SWCNT) coated electrodes. J. Power Sources 2013, 234, 208–216. [Google Scholar] [CrossRef]
- Terti, M.; Florea, A.; Feier, B.; Ovidiu Marian, I.; Silaghi-Dumitrescu, L.; Cristea, A.; S˘andulescu, R.; Cristea, C. Electrochemical Impedance Studies on Single and Multi-Walled Carbon Nanotubes–Polymer Nanocomposites for Biosensors Development. J. Nanosci. Nanotechnol. 2015, 15, 3385–3393. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Yin, H.; Liu, Z.; Luan, E.; Zhao, F.; Tang, Z.; Liu, S. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 2015, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.D.; Pederson, L.R.; Templeton, J.W.; Stevenson, J.W. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells, I. Cross Validation of Polarization Measurements by Impedance Spectroscopy and Current-Potential Sweep. J. Electrochem. Soc. 2010, 157, B220–B227. [Google Scholar] [CrossRef]
- Wang, H.; Pilon, L. Reply to comments on Intrinsic limitations of impedance measurements in determining electric double layer capacitances. Electrochim. Acta 2012, 76, 529–531. [Google Scholar] [CrossRef]
- Pandit, B.; Karade, S.S.; Sankapal, B.R. Hexagonal VS2 Anchored MWCNTs: First Approach to Design Flexible Solid-State Symmetric Supercapacitor Device. ACS Appl. Mater. Interfaces 2017, 9, 44880–44891. [Google Scholar] [CrossRef]
- Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources 2002, 105, 13–19. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahna, J.R. Electrochemical Characterization of the Active Surface in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells. J. Electrochem. Soc. 2003, 150, A770–A775. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Xie, W.; Han, X.; Feng, Q.; Jiang, R.; Shang, H.; Zhang, F.; Gao, L.; Wang, Z. Construction of Highly Active Pt/Ni-Fe Layered Double Hydroxide Electrocatalyst towards Methanol Oxidation in Alkaline Medium. Int. J. Electrochem. Sci. 2019, 14, 7961–7972. [Google Scholar] [CrossRef]
- Gojkovi, S.L.; Zecevic, S.K.; Savinell, R.F. O2 Reduction on an Ink-Type Rotating Disk Electrode Using Pt Supported on High-Area Carbons. J. Electrochem. Soc. 1998, 145, 3713–3720. [Google Scholar] [CrossRef]
- Shinozaki, K.; Zack, J.W.; Pylypenka, S.; Richards, R.M.; Pivovar, B.S.; Kocha, S.S. Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods. Int. J. Hydrog. 2015, 40, 16820–16830. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chen, C.; Zhou, M.; FU, G.; Zhao, Y.; Chen, Y. Improved oxygen reduction activity of carbon nanotubes and graphene through adenine functionalization. RSC Adv. 2017, 7, 26722–26728. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xia, Z.; Dai, L. Carbon-based electrocatalysts for advances energy conversion and storage. Sci. Adv. 2015, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Conway, B.E.; Tilak, B.V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 2002, 47, 3571–3594. [Google Scholar] [CrossRef]
- Sheng, W.; Gasteiger, H.A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536. [Google Scholar] [CrossRef]
- Wakabayashi, N.; Takeichi, M.; Itagaki, M.; Uchida, H.; Watanabe, M. Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J. Electroanal. Chem. 2005, 574, 339–346. [Google Scholar] [CrossRef]
- Halseid, R.; Bystron, T.; Tunold, R. Oxygen reduction on platinum in aqueous sulphuric acid in the presence of ammonium. Electrochim. Acta 2006, 51, 2737–2742. [Google Scholar] [CrossRef]
- Wang, S.; Yu, D.; Dai, L. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2011, 133, 5182–5185. [Google Scholar] [CrossRef] [PubMed]
- El-Deab, M.S.; Ohsaka, T. Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochim. Acta 2002, 47, 4255–4261. [Google Scholar] [CrossRef]
- Chen, G.; Yang, H.Y. Electrochemical study of oxygen reduction reaction on natural chalcopyrite in sulfuric acid and ferric solutions. Int. J. Electrochem. Sci. 2016, 11, 34–44. [Google Scholar]
- Demarconnay, L.; Coutanceau, C.; Léger, J.-M. Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim. Acta 2008, 53, 3232–3241. [Google Scholar] [CrossRef]
Composite Ink | ASRohmic [Ωcm2] | Ca from EIS 1 [mF/ cm2] | Ca from CV 2 [mF/ cm2] | QEDLC from CV 3 [mC/ cm2] | ECSAEDLC 4 [cm2/mgPt] | QH from CV 5 [mC/ cm2] | ECSAH 6 [cm2/mgPt] | |
---|---|---|---|---|---|---|---|---|
25 mM Platinum | 10 wt % CNT | 0.761 | 29.0 | 17.7 | 71.2 | 18.5 | 8.77 | 6.86 |
20 wt % CNT | 0.554 | 23.1 | 11.3 | 26.8 | 6.95 | 0.631 | 2.53 | |
30 wt % CNT | 1.21 | 14.9 | 2.14 | 26.6 | 6.90 | 3.33 | 0.863 | |
100 mM Platinum | 10 wt % CNT | 0.748 | 39.7 | 2.68 | 63.8 | 51.9 | 9.19 | 7.46 |
20 wt % CNT | 1.78 | 13.7 | 0.92 | 22.9 | 18.6 | 3.17 | 2.58 | |
30 wt % CNT | 1.17 | 16.9 | 0.81 | 45.7 | 37.1 | 48.9 | 39.7 |
Electron Transfer Number (n) Per Oxygen Molecule | |||||
---|---|---|---|---|---|
25 mM Platinum | V (vs Ag/AgCl) | ||||
0.05 V | 0.15 V | 0.25 V | 0.35 V | ||
% CNT | 10 wt % | 9.49 | 8.99 | 9.68 | 1.16 |
20 wt % | 6.26 | 4.88 | 4.68 | 5.08 | |
30 wt % | 4.55 | 3.83 | 3.80 | 4.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagelli, E.A.; Burpo, F.J.; Marbach, D.A.; Romero, A.N.; Rabbia, D.J.; Mahr, H.W.; Jaskot, M.H.; Murray, A.N.; Chu, D.D. Scalable Carbon Nanotube/Platinum Nanoparticle Composite Inks from Salt Templates for Oxygen Reduction Reaction Electrocatalysis for PEM Fuel Cells. J. Compos. Sci. 2020, 4, 160. https://doi.org/10.3390/jcs4040160
Nagelli EA, Burpo FJ, Marbach DA, Romero AN, Rabbia DJ, Mahr HW, Jaskot MH, Murray AN, Chu DD. Scalable Carbon Nanotube/Platinum Nanoparticle Composite Inks from Salt Templates for Oxygen Reduction Reaction Electrocatalysis for PEM Fuel Cells. Journal of Composites Science. 2020; 4(4):160. https://doi.org/10.3390/jcs4040160
Chicago/Turabian StyleNagelli, Enoch A., F. John Burpo, Delaney A. Marbach, Aaron N. Romero, Daniel J. Rabbia, Hugh W. Mahr, Mark H. Jaskot, Asia N. Murray, and Deryn D. Chu. 2020. "Scalable Carbon Nanotube/Platinum Nanoparticle Composite Inks from Salt Templates for Oxygen Reduction Reaction Electrocatalysis for PEM Fuel Cells" Journal of Composites Science 4, no. 4: 160. https://doi.org/10.3390/jcs4040160
APA StyleNagelli, E. A., Burpo, F. J., Marbach, D. A., Romero, A. N., Rabbia, D. J., Mahr, H. W., Jaskot, M. H., Murray, A. N., & Chu, D. D. (2020). Scalable Carbon Nanotube/Platinum Nanoparticle Composite Inks from Salt Templates for Oxygen Reduction Reaction Electrocatalysis for PEM Fuel Cells. Journal of Composites Science, 4(4), 160. https://doi.org/10.3390/jcs4040160