Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review
Abstract
:1. Introduction
2. Automatic Lamination and In-Situ Consolidation (ISC)
- Tooling temperature. The trend in void volume to decrease with lower layup speed is reversed when tool temperatures approach the melting temperature of the polymer included in the tape. When the temperature is low, the tool usually acts as a heat sink, leading to a high viscosity that prevents good movement of the chains and impacting a low degree of bonding, making it necessary to decrease the wrapping speed. In contrast, when the tool is at a high temperature (around 573 K for PEEK), good degrees of bonding are obtained even close to 10 m/min.
- Compaction force. The degree of bonding increases with higher contact forces, as should be expected, and the void content also declines. Its effect being more marked with the increase in the speed of the layup (the more speed, the more force required). Regarding the layup speed, the level of porosity should decrease with increasing force and increase in speed. On the other hand, the degree of bonding, despite increasing with force, decreases with speed.
- Number of layers. When the number of layers of a laminate is high, a double effect occurs; the lower ones receive more consolidation stages (reconsolidation) but the upper ones are more isolated from the heat sink-tooling. This causes them to experience greater heating and therefore it contributes to increasing the size of the pores.
- Heating length. Longer heating lengths contribute to increasing the level of porosity. On the other hand, the degree of bonding is improved, and the process can be carried out at higher speeds. Heating length is directly related to the heating time as both are related through the speed of lamination.
- The use of several rollers contributes to improving the degree of bonding, which can go from varying between 20–95% to a range between 70–95%. Despite the advantage of having several rollers over compaction, increasing their number has a detrimental effect on the layup machine, making it necessary to have more components (more occupied volume) and making layup of complex geometries nearly impossible.
Improvements to the ISC Process
- Pre-heating the incoming tape, in order to achieve a progressive drop in temperature when the tape and substrate come into contact, resulting in more progressive cooling and therefore reducing residual stresses.
- Working with a higher wrapping speed increases the residual stresses. The cause is the existence of point zones that are experiencing higher thermal gradients.
- The size of the heated surface also influences the residual stresses. The smaller the heated surface, the sharper the heating–cooling profiles. Better results are observed when the heated surface of the substrate is larger than that of the contribution.
3. Thermal Transfer and Temperature Measurements
3.1. Heating Systems
3.2. Heat Transfer Models
- The thermal resistance to heating of the laser source is determined to be of infinitely small value, hence the advantage of this type of heating over others.
- The temperature-dependent properties of the material are simplified using its average value in the temperature range considered.
- Even executing an analysis of the layup process of a curved geometry, the author proposes to simplify the material as a plate geometry.
- The depth of penetration of the laser is considered to be less than the depth of penetration of the heat flux.
- The crystalline phases scatter light by local variations of the refractive index. The detection of higher absorbance in a semicrystalline material compared to an amorphous one is associated with the subsequent reception of the reflected rays. In the case of the composite material, the limited thickness of the surface resin layer and the small size of the spherulites formed make these points of reflection limited and can be considered negligible.
- The behavior of reflection of the PEEK in the NIR (near-infrared) can be considered representative of that presented by this material under laser radiation.
- The refractive index of the resin is estimated to be dependent on temperature inversely to the dependence of the coefficient of thermal expansion.
- The optical properties of the carbon fiber can be considered constant in the range of temperatures experienced during the in-situ consolidation and lamination process.
- Radiance is considered to be proportional to the irradiance in this material.
- The transmittance can be considered negligible for the CF/PEEK. The polymer, which in the amorphous state would have a high transmittance of laser energy, being reinforced by the fiber, would have a negligible effect on the whole. Transmittance can be neglected in calculations.
- In the composite material, the reflection depends on the orientation of the fiber with respect to the emitting focus, showing special reflection patterns.
- Knowing the angle of incidence of the laser, it is possible to estimate the angle of reflection by applying Snell’s law.
- It can be estimated that most of the incident light is both absorbed and reflected by the first carbon fiber layer of the surface and this allows the analysis to be simplified to a surface to run models of macroscopic behavior.
- It is possible to consider the refractive index in the composite material only for its real part as there is practically no absorption.
- In radiation simulation, choosing a collimated beam with the geometry of a hat-shaped profile is not appropriate when working with NIR lasers with the inclinations required by the ISC process; it is essential to consider the beam divergence.
- After two beam reflections, the irradiation intensity becomes negligible. To realistically model heat transfer, the laser incidence profile should also account for these first two reflections.
3.3. Experimental Determination of Temperature
3.4. Control Systems
4. Adhesion
4.1. Intimate Contact Theory
4.1.1. Representation of the Material Surfaces
4.1.2. Evolution of the Surface Irregularity
4.2. Polymeric Chain Movement Theories of Self-Adherence
4.3. Bonding Theory
5. Crystallization
5.1. Transcrystallization
5.2. Crystallization and Mechanical Properties
5.2.1. Crystallization and Mechanical Properties in PEEK
5.2.2. Crystallization and Mechanical Properties in Composite Material
6. Thermal Degradation
- Random excision of chains. Breakage occurs at apparently random positions on the chain.
- Excision at the end of the chain. Individual monomer units are successively removed from the end of the chain.
- Stripped from the chain. Atoms or groups thereof are broken which are not part of the backbone of the polymer.
- Crosslinking. Links between chains of the polymer are formed.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dutton, S.; Kelly, D.; Baker, A. Composite Materials for Aircraft Structures, 2nd ed.; AIAA: Reston, VA, USA, 2004; ISBN 9781563475405/9781600861680. [Google Scholar]
- Campbell, F.C. Manufacturing Processes for Advanced Composites; Elsevier: New York, NY, USA, 2004; ISBN 9781856174152. [Google Scholar]
- Biron, M. Thermoplastic Composites. Thermoplastics and Thermoplastic Composites; Elsevier: New York, NY, USA, 2018; pp. 821–882. ISBN 9780081025017. [Google Scholar]
- Hoa, S.V. Principles of the Manufacturing of Composite Materials; DEStech Publications: Lancaster, PA, USA, 2009; ISBN 9781932078268. [Google Scholar]
- Segal, L.; Testa, A. Lamination of Highly Reinforced Thermoplastic Composites. U.S. Patent 4,469,543, 4 September 1984. [Google Scholar]
- Brown, C.L.; Ashcraft, H.C.; Tichenor, D.R.; Garcia, R.M. Automated Tape Laminator Head for Thermoplastic Matrix Composite Material. U.S. Patent 4,990,213, 2 February 1991. [Google Scholar]
- Holmes, S.; Lawton, S.A.; Haake, J.M. Method for Heating and Controlling Temperature of Composite Material during Automated Placement. U.S. Patent 6,451,152, 17 September 2002. [Google Scholar]
- Maison, S.; Meunier, S.; Thibout, C.; Mouton, L.; Payen, H.; Vautey, P.; Coiffier-Colas, C.; Delbez, J. Method for Making Parts in Composite Material with Thermoplastic Matrix. U.S. Patent 6,613,258, 2 September 2003. [Google Scholar]
- Burchell, P. Method of Tape Laying of Thermoplastic Composite Materials. U.S. Patent Application No. 12/922,923, 13 January 2011. [Google Scholar]
- Zaffiro, P.A. Control of Radiant Heating System for Thermoplastic Composite Tape. U.S. Patent 5,177,340, 5 January 1993. [Google Scholar]
- Hauber, D.E.; Langone, R.J.; Martin, J.P.; Miller, S.F.; Pasanen, M.J. Composite Tape Laying Aparatus and Method. U.S. Patent 7,063,118, 20 June 2006. [Google Scholar]
- Martin, J.P. Multiple Tape Laying Apparatus and Method. U.S. Patent 7,293,590, 13 November 2007. [Google Scholar]
- Langone, R.J.; Hauber, D.E.; August, Z.A. Thermoplastic Composite Prepreg for Automated Fiber Placement. U.S. Patent US20130164498A1, 27 June 2013. [Google Scholar]
- Langone, R.J.; Becker, R.D. Methods for Forming a Structure Having a Lightning Strike Protection. U.S. Patent 8,947,847, 3 February 2015. [Google Scholar]
- Langone, R.J.; Hauber, D.E.; August, Z.A. Thermoplastic Composite Prepreg for Automated Fiber Placement. U.S. Patent US20160023433A1, 28 January 2016. [Google Scholar]
- Cope, R.D.; Funck, S.B.; Gruber, M.B.; Lamontia, M.A.; Johnson, A.D. Tape Placement Head for applying Thermoplastic Tape to an Object. U.S. Patent 7,404,868, 29 July 2008. [Google Scholar]
- Caffiau, J.; Gaillard, L.; Hardy, Y. Fiber Application Head including a Segmented Compaction Roller. U.S. Patent 9,248,591, 2 February 2016. [Google Scholar]
- Martín Hernando, M.I. Modelización del Proceso de Laminación Automática y Consolidación In-Situ con Materiales Compuestos Termoplásticos APC2/AS4. Ph.D. Thesis, E.T.S. de Ingenieros Aeronáuticos (UPM), 2019. Available online: https://doi.org/10.20868/UPM.thesis.56804 (accessed on 22 August 2020).
- Lee, W.I.; Springer, G.S. A Model of the Manufacturing Process of Thermoplastic Matrix Composites. J. Compos. Mater. 1987, 21, 1017–1055. [Google Scholar] [CrossRef]
- Cogswell, F.N. Thermoplastic Aromatic Polymer Composites: A Study of the Structure, Processing and Properties of Carbon Fibre-Reinforced Poly-ether-ether-ketone and Related Materials; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9781483164762. [Google Scholar]
- Kozaczuk, K. Automated Fiber Placement Systems Overview; Transactions of the Institute of Aviation: Warsaw, Poland, 2016; Volume 245, pp. 52–59. ISSN 05096669. [Google Scholar] [CrossRef]
- Dai, S.C.; Ye, L. Characteristics of CF/PEI tape winding process with on-line consolidation. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1227–1238. [Google Scholar] [CrossRef]
- Baley, C.; Kervoëlen, A.; Lan, M.; Cartié, D.; Le Duigou, A.; Bourmaud, A.; Davies, P. Flax/PP manufacture by automated fibre placement (AFP). Mater. Des. 2016, 94, 207–213. [Google Scholar] [CrossRef]
- McGregor, O.; Duhovic, M.; Somashekar, A.; Bhattacharyya, D. Pre-impregnated natural fibre-thermoplastic composite tape manufacture using a novel process. Compos. Part A Appl. Sci. Manuf. 2017, 101, 59–71. [Google Scholar] [CrossRef]
- Lefebure, P.; Lang, D. DINAMIT Development and INnovation for Advanced Manufacturing of Thermoplastics. In FP6 Aerospace European Project 2004–2007; Available online: cordis.europa.eu/project/id/502831 (accessed on 22 August 2020).
- Khan, M.A.; Mitschang, P.; Schledjewski, R. Identification of some optimal parameters to achieve higher laminate quality through tape placement process. Adv. Polym. Technol. 2010, 29, 98–111. [Google Scholar] [CrossRef]
- Derisi, B.; Hoa, S.V.; Xu, D.; Hojjati, M.; Fews, R. Mechanical behavior of carbon/PEKK thermoplastic composite tube under bending load. J. Thermoplast. Compos. Mater. 2011, 24, 29–49. [Google Scholar] [CrossRef]
- Song, C.H. Development of Manufacturing Process and Testing for Thick Curved Thermoplastic Composite Tubes Made by Automated Fiber Placement. Masters Thesis, Concordia University, Montreal, QC, Canada, 2018. [Google Scholar]
- LeGault, M. Building a Better Tail Boom. Compos. World. Available online: www.compositesworld.com/articles/building-a-better-tail-boom (accessed on 12 October 2020).
- Henne, F.; Ehar, S.; Kollmannsberger, A.; Hoeck, B.; Sause, M.; Drechsler, K. Thermoplastic in-situ fiber placement for future solid rocket motor casing manufacturing. In Proceedings of the SAMPE Europe SETEC, Tampere, Sweden, 10–11 September 2014. [Google Scholar]
- Murray, B.R.; Doyle, A.; Feerick, P.; Semprimoschnig, C.O.; Leen, S.B.; Ó Brádaigh, C.M. Rotational moulding of PEEK polymer liners with carbon fibre/PEEK over tape-placement for space cryogenic fuel tanks. Mater. Des. 2017, 132, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Oliveri, V.; Peeters, D.; Clancy, G.J.; Jones, D.; O’Higgins, R.; Weaver, P.M. Design, Optimization and Manufacturing of a Unitized Carbon Fiber/Thermoplastic Wingbox Structure; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018; ISBN 9781624105326. [Google Scholar]
- Peeters, D.; Clancy, G.J.; Oliveri, V.; O’Higgins, R.; Jones, D.; Weaver, P.M. Thermoplastic Composite Stiffener Design with Manufacturing Considerations. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA: Reston, VA, USA, 2018; ISBN 9781624105326. [Google Scholar]
- Di Francesco, M.; Veldenz, L.; DellÁnno, G.; Potter, K. Heater power control for multi-material, variable speed Automated Fibre Placement. Compos. Part A Appl. Sci. Manuf. 2017, 101, 408–421. [Google Scholar] [CrossRef]
- Hoang, M.D. Procedure for Making Flat Thermoplastic Composite Plates by Automated Fiber Placement and Their Mechanical Properties. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2015. [Google Scholar]
- Vaidya, U.K.; Chawla, K.K. Processing of fibre reinforced thermoplastic composites. Int. Mater. Rev. 2008, 53, 185–218. [Google Scholar] [CrossRef]
- Schaefer, P.M. Material characterization for determining the consolidation properties of carbon fiber tapes with PA-6 matrix. In Proceedings of the 20th International Conference on Composite Materials, Groningen, The Netherlands, 19–24 July 2015 2015. [Google Scholar]
- Parlevliet, P.P.; Bersee, H.E.; Beukers, A. Residual stresses in thermoplastic composites—A study of the literature-part I: Formation of residual stresses. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1847–1857. [Google Scholar] [CrossRef]
- Parlevliet, P.P.; Bersee, H.E.; Beukers, A. Residual stresses in thermoplastic composites—A study of the literature-part II: Experimental techniques. Compos. Part A Appl. Sci. Manuf. 2007, 38, 651–665. [Google Scholar] [CrossRef]
- Parlevliet, P.P.; Bersee, H.E.; Beukers, A. Residual stresses in thermoplastic composites—A study of the literature-part III: Effects of thermal residual stresses. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1581–1596. [Google Scholar] [CrossRef]
- Sonmez, F.O.; Hahn, H.T.; Akbulut, M. Analysis of Process-Induced Residual Stresses in Tape Placement. J. Thermoplast. Compos. Mater. 2002, 15, 525–544. [Google Scholar] [CrossRef]
- August, Z.; Ostrander, G.; Michasiow, J.; Hauber, D. Recent Developments in Automated Fiber Placement of Thermoplastic Composites. SAMPE J. 2014, 50, 30–37. [Google Scholar]
- Funck, R.; Neitzel, M. Improved thermoplastic tape winding using laser or direct-flame heating. Compos. Manuf. 1995, 6, 189–192. [Google Scholar] [CrossRef]
- Lee, M. Heat Transfer and Consolidation Modeling of Composite Fiber Tow in Fiber Placement. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2004. [Google Scholar]
- Haake, J. High power diode laser-assisted fiber placement of composite structure. In Proceedings of the ICALEO 2005: 24th International Congress on Laser Materials Processing and Laser Microfabrication, Miami, FL, USA, 31 October–3 November 2005. [Google Scholar]
- Schledjewski, R.; Miaris, A. Thermoplastic tape placement by means of diode laser heating. In Proceedings of the SAMPE’09 Spring Symposium Conference, Baltimore, MD, USA, 19–21 May 2009. [Google Scholar]
- Tierney, J.; Gillespie, J.W. Modeling of Heat Transfer and Void Dynamics for the Thermoplastic Composite Tow-Placement Process. J. Compos. Mater. 2003, 37, 1745–1768. [Google Scholar] [CrossRef]
- Barasinski, A.; Leygue, A.; Soccard, E.; Poitou, A. In situ consolidation for thermoplastic tape placement process is not obvious. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2011; Volume 1353, pp. 948–953. [Google Scholar]
- Barasinski, A.; Leygue, A.; Soccard, E.; Poitou, A.; Chinesta, F.; Chastel, Y.; El Mansori, M. An Improvement in Thermal Modelling of Automated Tape Placement Process. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2011; Volume 1315, pp. 185–190. [Google Scholar]
- Maurer, D.; Mitschang, P. Laser-powered tape placement process simulation and optimization. Adv. Manuf. Polym. Compos. Sci. 2015, 1, 129–137. [Google Scholar]
- Stokes-Griffin, C.; Compston, P. A combined optical-thermal model for near-infrared laser heating of thermoplastic composites in an automated tape placement process. Compos. Part A Appl. Sci. Manuf. 2015, 75, 104–115. [Google Scholar] [CrossRef]
- Di Francesco, M.; Giddings, P.F.; Scott, M.; Goodman, E.; Dell Ánno, G.; Potter, K. Influence of laser power density on the meso-structure of thermoplastic composite preforms manufactured by automated fibre placement. In Proceedings of the International SAMPE Technical Conference, Long Beach, CA, USA, 23–26 May 2016. [Google Scholar]
- Köhler, B.; Noeske, A.; Kindervater, T.; Wessollek, A.; Brand, T.; Biesenbach, J. 11-kW direct diode laser system with homogenized 55 × 20 mm 2 top-hat intensity distribution. In High-Power Diode Laser Technology and Applications V; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6456, p. 64560O. [Google Scholar]
- Homburg, O.; Bayer, A.; Mitra, T.; Meinschien, J.; Aschke, L. Beam shaping of high power diode lasers benefits from asymmetrical refractive microlens arrays. In High-Power Diode Laser Technology and Applications VI; International Society for Optics and Photonics: San Jose, CA, USA, 2008; Volume 6876. [Google Scholar]
- Brecher, C.; Emonts, M.; Stimpfl, J. CO2-Laser-assisted production of hybrid fiber-reinforced thermoplastic composites. In Proceedings of the ICCM19, Montréal, QC, Canada, 28 July 2013. [Google Scholar]
- Rizzolo, R.H.; Walczyk, D.F. Ultrasonic consolidation of thermoplastic composite prepreg for automated fiber placement. J. Thermoplast. Compos. Mater. 2016, 29, 1480–1497. [Google Scholar] [CrossRef]
- Chu, Q.; Li, Y.; Xiao, J.; Huan, D.; Zhang, X.; Chen, X. Processing and characterization of the thermoplastic composites manufactured by ultrasonic vibration assisted automated fiber placement. J. Thermoplast. Compos. Mater. 2018, 31, 339–358. [Google Scholar] [CrossRef]
- Lichtinger, R.; Hörmann, P.; Stelzl, D.; Hinterhölzl, R. The effects of heat input on adjacent paths during Automated Fibre Placement. Compos. Part A Appl. Sci. Manuf. 2015, 68, 387–397. [Google Scholar] [CrossRef]
- Weiler, T.; Emonts, M.; Janssen, H. On the use of flexible intensity distributions for thermoplastic tape placement by means of VCSEL. In Proceedings of the ITHEC 2016, 3rd International Conference on Thermoplastic Composites, Bremen, Germany, 10 November 2016. [Google Scholar]
- Grove, S. Thermal modelling of tape laying with continuous carbon fibre reinforced thermoplastic. Composites 1988, 19, 367–375. [Google Scholar] [CrossRef]
- Saliba, T.E.; Anderson, D.P.; Servais, R.A. Process Modeling of Heat Transfer and Crystallization in Complex Shapes Thermoplastic Composites. J. Thermoplast. Compos. Mater. 1989, 2, 91–104. [Google Scholar] [CrossRef]
- Ghasemi Nejhad, M.; Cope, R.; Güceri, S. Thermal Analysis of In-Situ Thermoplastic Composite Tape Laying. J. Thermoplast. Compos. Mater. 1991, 4, 20–45. [Google Scholar] [CrossRef]
- Pitchumani, R.; Ranganathan, S.; Don, R.; Gillespie, J.; Lamontia, M. Analysis of transport phenomena governing interfacial bonding and void dynamics during thermoplastic tow-placement. Int. J. Heat Mass Transf. 1996, 39, 1883–1897. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.K.; Lee, W.I. A study on heat transfer during thermoplastic composite tape lay-up process. Exp. Therm. Fluid Sci. 1996, 13, 408–418. [Google Scholar] [CrossRef]
- Sonmez, F.O.; Hahn, H.T. Analysis of the On-Line Consolidation Process in Thermoplastic Composite Tape Placement. J. Thermoplast. Compos. Mater. 1997, 10, 543–572. [Google Scholar] [CrossRef]
- Toso, Y.M.P. Effective Automated Tape Winding Process with On-Line Bonding under Transient Thermal Conditions. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2003. [Google Scholar]
- Tumkor, S.; Turkmen, N.; Chassapis, C.; Manoochehri, S. Modeling of heat transfer in thermoplastic composite tape lay-up manufacturing. Int. Commun. Heat Mass Transf. 2001, 28, 49–58. [Google Scholar] [CrossRef]
- Heider, D.; Piovoso, M.J.; Gillespie, J.W., Jr. Application of a neural network to improve an automated thermoplastic tow-placement process. J. Process Control 2002, 12, 101–111. [Google Scholar] [CrossRef]
- Tierney, J.; Gillespie, J.W. Modeling of In Situ Strength Development for the Thermoplastic Composite Tow Placement Process. J. Compos. Mater. 2006, 40, 1487–1506. [Google Scholar] [CrossRef]
- Schlottermuller, M.; Lu, H.; Roth, Y.; Himmel, N.; Schledjewski, R.; Mitschang, P. Thermal Residual Stress Simulation in Thermoplastic Filament Winding Process. J. Thermoplast. Compos. Mater. 2003, 16, 497–519. [Google Scholar] [CrossRef]
- Grouve, W. Weld Strength of Laser-Assisted Tape-Placed Thermoplastic Composites. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2012. [Google Scholar]
- Duhovic, M.; Hümbert, M.; Mitschang, P.; Maier, M.; Caldichoury, I.; L’Eplattenier, P. Further advances in simulating the processing of composite materials by electromagnetic induction. In Proceedings of the 13th International LS-DYNA Conference, Detroit, MI, USA, 8–10 June 2014. [Google Scholar]
- Han, Z.; Cao, Z.; Shao, Z.; Fu, H. Parametric study on heat transfer for tow placement process of thermoplastic composite. Polym. Polym. Compos. 2014, 22, 713–722. [Google Scholar] [CrossRef]
- Li, Z.; Yang, T.; Du, Y. Dynamic finite element simulation and transient temperature field analysis in thermoplastic composite tape lay-up process. J. Thermoplast. Compos. Mater. 2015, 28, 558–573. [Google Scholar] [CrossRef]
- Phillips, R.; Sunderland, P.; Kim, P.; Manson, J.-A.E. Influence of processing parameters on the dimensional stability of polymer composites. Int. Workshop Adv. Mater. High-Precis. Detect. 1994, 171–178. [Google Scholar] [CrossRef]
- Kergomard, Y.D. 3D Thermo-mechanical model based simulation of the welding of thermoplastic composite tape using automated tape laying (ATL) process. In Proceedings of the 20th International Conference Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Weiler, T.; Emonts, M.; Wollenburg, L.; Janssen, H. Transient thermal analysis of laser-assisted thermoplastic tape placement at high process speeds by use of analytical solutions. J. Thermoplast. Compos. Mater. 2018, 31, 311–338. [Google Scholar] [CrossRef]
- Weiler, T.; Emonts, M.; Striet, P.; Gronenborn, S.; Janssen, H. Optical modelling of VCSEL assisted thermoplastic tape placement. In Proceedings of the 17th European Conference on Composite Materials, (ECCM17), Munich, Germany, 26–30 June 2016. [Google Scholar]
- Pistor, C.; Yardimci, M.; Güçeri, S. On-line consolidation of thermoplastic composites using laser scanning. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1149–1157. [Google Scholar] [CrossRef]
- Hassan, N.; Thompson, J.E.; Batra, R.C.; Hulcher, A.B.; Song, X.; Loos, A.C. A Heat Transfer Analysis of the Fiber Placement Composite Manufacturing Process. J. Reinf. Plast. Compos. 2005, 24, 869–888. [Google Scholar] [CrossRef]
- Nicodeau, C. Modélisation du Soudage en Continu de Composites à Matrice Thermoplastique. Ph.D. Thesis, ENSAM, Paris, France, 2005. [Google Scholar]
- Li, Y.H.; Fu, H.Y.; Shao, Z.X. The Influence of Preheating on Automated Fiber Placement Speed. Adv. Mater. Res. 2011, 213, 136–142. [Google Scholar] [CrossRef]
- Lamèthe, J.-F. Etude de L’adhésion de Composites Thermoplastiques Semi-Cristallins; Application à la Mise en Oeuvre par Soudure. Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 2004. [Google Scholar]
- Lamèthe, J.-F.; Beauchêne, P.; Léger, L. Polymer dynamics applied to PEEK matrix composite welding. Aerosp. Sci. Technol. 2005, 9, 233–240. [Google Scholar] [CrossRef]
- Barasinski, A.; Leygue, A.; Soccard, E.; Poitou, A. Identification of non-uniform thermal contact resistance in automated tape placement process. Int. J. Mater. Form. 2014, 7, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Bur, N.; Joyot, P.; Ghnatios, C.; Villon, P.; Cueto, E.; Chinesta, F. On the use of model order reduction for simulating automated fibre placement processes. Adv. Modeling Simul. Eng. Sci. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Perez, M.; Barasinski, A.; Courtemanche, B.; Ghnatios, C.; Abisset-Chavanne, E.; Chinesta, F. Simulation du comportement thermique du procédé d‘enroulement filamentaire de composites thermoplastiques assisté par chauffage laser. Journées Nationale Composites 2017. [Google Scholar]
- Schaefer, P.; Gierszewski, D.; Kollmannsberger, A.; Zaremba, S.; Drechsler, K. Analysis and improved process response prediction of laser-assisted automated tape placement with PA-6/carbon tapes using Design of Experiments and numerical simulations. Compos. Part A Appl. Sci. Manuf. 2017, 96, 137–146. [Google Scholar] [CrossRef]
- Stokes-Griffin, C.; Compston, P. The effect of processing temperature and placement rate on the short beam strength of carbon fibre/PEEK manufactured using a laser tape placement process. Compos. Part A Appl. Sci. Manuf. 2015, 78, 274–283. [Google Scholar] [CrossRef]
- Stokes-Griffin, C.; Compston, P. Optical characterization and modelling for oblique near-infrared laser heating of carbon fibre reinforced thermoplastic composites. Opt. Lasers Eng. 2015, 72, 1–11. [Google Scholar] [CrossRef]
- Stokes-Griffin, C.; Compston, P. An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon fibre/PEEK. Compos. Part A Appl. Sci. Manuf. 2016, 88, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Pignon, B.; Boyard, N.; Sobotka, V.; Delaunay, D. Heat transfer analysis at high cooling rate on the surface of thermoplastic parts. Int. J. Heat Mass Transf. 2017, 106, 253–262. [Google Scholar] [CrossRef]
- Shih, P.-J. On-Line Consolidation of Thermoplastic Composites. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 1997. [Google Scholar]
- Lionetto, F.; Dell’Anna, R.; Montagna, F.; Maffezzoli, A. Modeling of continuous ultrasonic impregnation and consolidation of thermoplastic matrix composites. Compos. Part A Appl. Sci. Manuf. 2016, 82, 119–129. [Google Scholar] [CrossRef]
- Romoli, L.; Fischer, F.; Kling, R. A study on UV laser drilling of PEEK reinforced with carbon fibers. Opt. Lasers Eng. 2012, 50, 449–457. [Google Scholar] [CrossRef]
- Nichelatti, E. Complex refractive index of a slab from reflectance and transmittance: Analytical solution. J. Opt. A Pure Appl. Opt. 2002, 4, 400–403. [Google Scholar] [CrossRef]
- Reichardt, J.; Baran, I.; Akkerman, R. New analytical and numerical optical model for the laser assisted tape winding process. Compos. Part A Appl. Sci. Manuf. 2018, 107, 647–656. [Google Scholar] [CrossRef]
- Oromiehie, E.; Prusty, B.G.; Compston, P.; Rajan, G. In situ process monitoring for automated fibre placement using fibre Bragg grating sensors. Struct. Health Monit. Int. J. 2016, 15, 706–714. [Google Scholar] [CrossRef]
- del Saenz Castillo, D.; Martin, I.; Rodriguez-Lence, F.; Güemes, A. On-line monitoring of a laser assisted fiber placement process with CFR thermoplastic matrix by using Fiber Bragg Gratings. In Proceedings of the 8th European Workshop on Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- del Saenz Castillo, D.; Martin, I.; Calvo, S.; Güemes, A. Real-time monitoring of thermal history of thermoplastic automatic lamination with FBG sensors and process modelling validation. Smart Mater. Struct. 2020, 29, 115004. [Google Scholar] [CrossRef]
- Khan, S. Thermal Control System Design for Automated Fiber Placement Process. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2011. [Google Scholar]
- Loos, A.C.; Dara, P.H. Processing of thermoplastic matrix composites. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Berlin/Heidelberg, Germany, 1987; pp. 1257–1265. ISBN 9781461290544/9781461318934. [Google Scholar]
- Yang, F.; Pitchumani, R. A fractal Cantor set based description of interlaminar contact evolution during thermoplastic composites processing. J. Mater. Sci. 2001, 36, 4661–4671. [Google Scholar] [CrossRef]
- Yang, F.; Pitchumani, R. Healing of Thermoplastic Polymers at an Interface under Nonisothermal Conditions. Macromolecules 2002, 35, 3213–3224. [Google Scholar] [CrossRef]
- Yang, F.; Pitchumani, R. Interlaminar contact development during thermoplastic fusion bonding. Polym. Eng. Sci. 2002, 42, 424–438. [Google Scholar] [CrossRef]
- Yang, F.; Pitchumani, R. Nonisothermal healing and interlaminar bond strength evolution during thermoplastic matrix composites processing. Polym. Compos. 2003, 24, 263–278. [Google Scholar] [CrossRef]
- Khan, M.A.; Schledjewski, R. Influencing factors for an online consolidating thermoplastic tape placement process. In Proceedings of the 17th International Conference on Composite Materials, ICCM-17, Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Stokes-Griffin, C.; Compston, P. Investigation of sub-melt temperature bonding of carbon fibre/PEEK in an automated laser tape placement process. Compos. Part A Appl. Sci. Manuf. 2016, 84, 17–25. [Google Scholar] [CrossRef]
- Schaefer, P.; Guglhoer, T.; Sause, M.; Drechsler, K. Development of intimate contact during processing of carbon fiber reinforced Polyamide-6 tapes. J. Reinf. Plast. Compos. 2017, 36, 593–607. [Google Scholar] [CrossRef]
- Levy, A.; Heider, D.; Tierney, J.; Gillespie, J.W. Inter-layer thermal contact resistance evolution with the degree of intimate contact in the processing of thermoplastic composite laminates. J. Compos. Mater. 2014, 48, 491–503. [Google Scholar] [CrossRef]
- Perez, M.; Leon, A.; Dedieu, C.; Argerich, C.; Defoort, B.; Dupillier, J.M.; Soccard r Barasinski, A.; Chinesta, F. Keys for designing the most efficient and robust in-situ TP ATP. In Proceedings of the 6th International Carbon Composites Conference, Arcachon, France, 4–6 June 2018. [Google Scholar]
- Yu, T.; Shi, Y.; He, X.; Kang, C.; Deng, B. Modeling and optimization of interlaminar bond strength for composite tape winding process. J. Reinf. Plast. Compos. 2017, 36, 579–592. [Google Scholar] [CrossRef]
- Marchello, J.M.; Messier, B.C. Effect of Pressure in Thermoplastic Ribbon Thermal Welding; NASA–TR-20040110360 Langley Research Center: Hampton, VA, USA, 1996. [Google Scholar]
- Mantell, S.C.; Springer, G.S. Manufacturing Process Models for Thermoplastic Composites. J. Compos. Mater. 1992, 26, 2348–2377. [Google Scholar] [CrossRef]
- de Gennes, P.G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 1971, 55, 572–579. [Google Scholar] [CrossRef]
- De Gennes, P.; Leger, L. Dynamics of entangled polymer chains. Annu. Rev. Phys. Chem. 1982, 33, 49–61. [Google Scholar] [CrossRef]
- Reptation and Tube Model. Available online: http://polymerdatabase.com/polymer%20physics/Reptation.html (accessed on 22 August 2020).
- Bastien, L.J.; Gillespie, J.W. A non-isothermal healing model for strength and toughness of fusion bonded joints of amorphous thermoplastics. Polym. Eng. Sci. 1991, 31, 1720–1730. [Google Scholar] [CrossRef]
- Sonmez, F.O.; Akbulut, M. Process optimization of tape placement for thermoplastic composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2013–2023. [Google Scholar] [CrossRef]
- Zhao, P.; Shirinzadeh, B.; Shi, Y.; Cheuk, S.; Clark, L. Multi-pass layup process for thermoplastic composites using robotic fiber placement. Robot. Comput. Integr. Manuf. 2018, 49, 277–284. [Google Scholar] [CrossRef]
- Quan, H.; Li, Z.-M.; Yang, M.-B.; Huang, R. On transcrystallinity in semi-crystalline polymer composites. Compos. Sci. Technol. 2005, 65, 999–1021. [Google Scholar] [CrossRef]
- Tierney, J.J.; Gillespie, J., Jr. Crystallization kinetics behavior of PEEK based composites exposed to high heating and cooling rates. Compos. Part A Appl. Sci. Manuf. 2004, 35, 547–558. [Google Scholar] [CrossRef]
- Guan, X.; Pitchumani, R. Modeling of spherulitic crystallization in thermoplastic tow-placement process: Spherulitic microstructure evolution. Compos. Sci. Technol. 2004, 64, 1363–1374. [Google Scholar] [CrossRef]
- Lee, K.; Weitsman, Y. Effects of Nonuniform Crystallinity on Stress Distributions in Cross-Ply Graphite/PEEK (APC-2] Laminates. J. Compos. Mater. 1991, 25, 1143–1157. [Google Scholar] [CrossRef]
- Yu, T.; Wu, C.M.; Chang, C.Y.; Wang, C.Y.; Rwei, S.P. Effects of crystalline morphologies on the mechanical properties of carbon fiber reinforcing polymerized cyclic butylene terephthalate composites. Express Polym. Lett. 2012, 6, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Regis, M.; Bellare, A.; Pascolini, T.; Bracco, P. Characterization of thermally annealed PEEK and CFR-PEEK composites: Structure-properties relationships. Polym. Degrad. Stab. 2017, 136, 121–130. [Google Scholar] [CrossRef]
- Tregub, A.; Harel, H.; Marom, G.; Migliaresi, C. The influence of thermal history on the mechanical properties of poly(ether ether ketone) matrix composite materials. Compos. Sci. Technol. 1993, 48, 185–190. [Google Scholar] [CrossRef]
- Cebe, P.; Chung, S.Y.; Hong, S.-D. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature. J. Appl. Polym. Sci. 1987, 33, 487–503. [Google Scholar] [CrossRef]
- Lee, I.-G.; Kim, D.-H.; Jung, K.-H.; Kim, H.-J.; Kim, H.-S. Effect of the cooling rate on the mechanical properties of glass fiber reinforced thermoplastic composites. Compos. Struct. 2017, 177, 28–37. [Google Scholar] [CrossRef]
- Gao, S.-L.; Kim, J.-K. Crystallinity and interphase properties of carbon fiber/PEEK matrix composites. In Proceedings of the 12th International Conference Composite Materials (ICCM-12), Paris, France, 5–9 July 1999. [Google Scholar]
- Gao, S.-L.; Kim, J.-K. Cooling rate influences in carbon fibre/PEEK composites. Part I. Crystallinity and interface adhesion. Compos. Part A Appl. Sci. Manuf. 2000, 31, 517–530. [Google Scholar] [CrossRef]
- Gao, S.-L.; Kim, J.-K. Cooling rate influences in carbon fibre/PEEK composites. Part II: Interlaminar fracture toughness. Compos. Part A Appl. Sci. Manuf. 2001, 32, 763–774. [Google Scholar] [CrossRef]
- Gao, S.-L.; Kim, J.-K. Cooling rate influences in carbon fibre/PEEK composites. Part III: Impact damage performance. Compos. Part A Appl. Sci. Manuf. 2001, 32, 775–785. [Google Scholar] [CrossRef]
- Ray, D.; Comer, A.J.; Lyons, J.; Obande, W.; Jones, D.; Higgins, R.M.; McCarthy, M.A. Fracture toughness of carbon fiber/polyether ether ketone composites manufactured by autoclave and laser-assisted automated tape placement. J. Appl. Polym. Sci. 2014, 132, 41643. [Google Scholar] [CrossRef]
- Gao, S.-L.; Kim, J.-K. Correlation among crystalline morphology of PEEK, interface bond strength, and in-plane mechanical properties of carbon/PEEK composites. J. Appl. Polym. Sci. 2002, 84, 1155–1167. [Google Scholar] [CrossRef]
- El Kadi, H.; Denault, J. Effects of Processing Conditions on the Mechanical Behavior of Carbon-Fiber-Reinforced PEEK. J. Thermoplast. Compos. Mater. 2001, 14, 34–53. [Google Scholar] [CrossRef]
- Toft, M. The Effect of Crystalline Morphology on the Glass Transition and Enthalpic Relaxation in Poly (Ether-Ether-Ketone). Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2012. [Google Scholar]
- Fink, B.K.; Gillespie, J.W., Jr.; Ersoy, N.B. Thermal degradation effects on consolidation and bonding in the thermoplastic fibre-placement process. In Report nb ARL-TR-2238; Army Research Lab., Aberdeen Proving Ground: Adelphi, MD, USA, 2000. [Google Scholar]
- Beyler, C.L.; Hirschler, M.M. Thermal decomposition of polymers. In SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2002; Volume 2, pp. 111–131. ISBN 978-1-4939-2565-0. [Google Scholar]
- Hancox, N. Thermal effects on polymer matrix composites: Part 2. Thermal degradation. Mater. Des. 1998, 19, 93–97. [Google Scholar] [CrossRef]
- Patel, P.; Hull, T.R.; McCabe, R.W.; Flath, D.; Grasmeder, J.; Percy, M. Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polym. Degrad. Stab. 2010, 95, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Nandan, B.; Kandpal, L.; Mathur, G. Poly(ether ether keto-ne)/poly(aryl ether sulphone) blends: Thermal degradation behaviour. Eur. Polym. J. 2003, 39, 193–198. [Google Scholar] [CrossRef]
- Bayerl, T.; Brzeski, M.; Martínez-Tafalla, M.; Schledjewski, R.; Mitschang, P. Thermal degradation analysis of short-time heated polymers. J. Thermoplast. Compos. Mater. 2015, 28, 390–414. [Google Scholar] [CrossRef]
- Tsotra, P.; Toma, M.; Pascual, A.; Schadt, F.; Brauner, C.; Dransfeld, C. Thermo-oxidative degradation of PEEK at high temperatures. In Proceedings of the 18th European Conference on Composite Materials, ECCM18, Athens, Greece, 25–28 June 2018. [Google Scholar]
- Parandoush, P.; Tucker, L.; Zhou, C.; Lin, D. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater. Des. 2017, 131, 186–195. [Google Scholar] [CrossRef]
- Martin, M.I.; Rodríguez-Lence, F.; Güemes, A.; Fernández-López, A.; Pérez-Maqueda, L.A.; Perejón, A. On the determination of thermal degradation effects and detection techniques for thermoplastic composites obtained by automatic lamination. Compos. Part A Appl. Sci. Manuf. 2018, 111, 23–32. [Google Scholar] [CrossRef]
[Ref.] | Material | ||||
---|---|---|---|---|---|
(Grove, 1988) [60] | APC2 ICI | a | a | a | - |
(GhasemiNejhad et al., 1991) [62] | APC2 | 10 b | 6 b | 0.72 b | 1560 b |
(Phillips et al., 1994) [75] | APC2 | 1700 | 5.9 | 0.7 b | 1600 |
(Kim et al., 1996) [64] | APC2 ICI | - | 10 a | a | - |
(Shih, 1997) [93] | APC2/AS4 | 1425 | 6.0 | 0.72 | 1562 |
(Toso, 2003) [66] | CF/PEEK | 969.32 +5.0244 T −0.009794 T2 | 0.55 | 0.41 | 1640 |
(Tierney and Gillespie, 2003) [47] | APC2 | 1370 | - | 0.34 | 1584 |
(Lamèthe et al., 2005) [84] | APC2 | 1300 c | - | 0.7 c | 1575 c |
(Tierney, Gillespie,2006) [69] | APC2 | 1370 | 3.5 | 0.34 | 1584 |
(Barasinski et al., 2011) [48] | APC2 | 1700 | 5 | 0.5 | 1560 |
(Li et al., 2015) [74] | APC2 ICI | 1124 d | 7.5 d | 0.75 c | 1562 |
(Maurer and Mitschang, 2015) [50] | APC2 | 886 (298 K) 1803 (573 K) | 5.54 (298 K) 9.36 (573 K) | 0.813 (298 K) 1.188 (573 K) | 1540 |
(Stokes-Griffin et al., 2015) [51] | AS4-PEEK150 | 1300 e | 5.9 e | 0.7 e | 1575 e |
(Lionetto et al., 2016) [94] | CF/PEEK | 1088 | 5.4 | 0.5 | 1532 |
(Weiler et al., 2018) [77] | CF/PEEK | 1425 | - | 0.72 | 1560 |
[Ref.] | Tooling Material | |||
---|---|---|---|---|
(Ghasemi Nejhad, 1991) [62] | Steel | 473 | 43 | 7800 |
(Stokes-Griffin et al., 2015) [51] | Aluminum | 951 | 237.5 | 2689 |
[Ref.] | Roller Material | ||
---|---|---|---|
(Grove, 1988) [60] | - | 500 | 7 |
(Nicodeau, 2005) [81] | Metal | 1000 | 13 |
(Stokes-Griffin et al., 2015) [51] | Elastomer | 1000 | 5–17.1 |
[Ref.] | Lamination Speed (m/min) |
---|---|
(Grove, 1988) [60] | 6 |
(Ghasemi Nejhad et al., 1991) [62] | 0.6−6 |
(Kim et al., 1996) [64] | 2.4−3.6−4.8 |
(Sonmez y Hahn, 1997) [65] | 1.8 |
(Pistor et al., 1999) [79] | 0.9 |
(Tumkor et al., 2001) [67] | 2.4 |
(Toso, 2003) [66] | 6 |
(Tierney y Gillespie, 2003) [47] | 2.4 |
(Nicodeau, 2005) [81] | 1.2−2.28−4.2 a |
(Grouve, 2012) [71] | 4.5−6−7.5 b |
(Han et al., 2014) [73] | 0.3−1.5 c |
(Maurer y Mitschang, 2015) [50] | 3−6−12 |
(Stokes-Griffin et al., 2015) [51] | 8 |
(Stokes-Griffin y Compston, 2015) [89] | 6−24 |
(Weiler et al., 2016b) [78] | 12 |
(Lionetto et al., 2016) [94] | 0,06−0,24 d |
(Di Francesco et al., 2017) [34] | 6−12−24−48 |
(Weiler et al., 2018) [77] | 0 to 30 |
(Murray et al., 2017) [31] | 12 |
[Ref.] | Reflectance | Absorbance | Emissivity | Refraction Index (n)—Material | Refraction Index (n)—Roller |
---|---|---|---|---|---|
(Grove, 1988) [60] | 0.28 | - | - | - | - |
(Grouve, 2012) [71] | - | - | 0.9 | 1.8 | - |
(Stokes-Griffin and Compston, 2015) [51] | - | - | - | 1.95–2.30 a | 1.42 |
(DiFrancesco et al., 2017) [34] | - | 0.6 b | 0.8 c | - | - |
(Weiler et al., 2018) [77] | - | 1 | 0.9 | - | - |
(Reichardt et al., 2018) [97] | - | - | - | - | 1.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, I.; Saenz del Castillo, D.; Fernandez, A.; Güemes, A. Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review. J. Compos. Sci. 2020, 4, 149. https://doi.org/10.3390/jcs4040149
Martin I, Saenz del Castillo D, Fernandez A, Güemes A. Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review. Journal of Composites Science. 2020; 4(4):149. https://doi.org/10.3390/jcs4040149
Chicago/Turabian StyleMartin, Isabel, Diego Saenz del Castillo, Antonio Fernandez, and Alfredo Güemes. 2020. "Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review" Journal of Composites Science 4, no. 4: 149. https://doi.org/10.3390/jcs4040149
APA StyleMartin, I., Saenz del Castillo, D., Fernandez, A., & Güemes, A. (2020). Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review. Journal of Composites Science, 4(4), 149. https://doi.org/10.3390/jcs4040149