# Tensile and Compressive Behavior in the Experimental Tests for PLA Specimens Produced via Fused Deposition Modelling Technique

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Production of Specimens and Geometrical Data

#### 2.1. Specimens for Tensile Test

#### 2.2. Specimens for Compression Test

## 3. Experimental Tests and Mechanical Properties

#### 3.1. Results for Tensile Test

#### 3.2. Results for Compression Test

## 4. Statistical and Capability Analysis

#### 4.1. Geometrical Data of Specimens for Tensile Test

#### 4.2. Geometrical Data of Specimens for Compression Test

#### 4.3. Mechanical Properties From Tensile Test

#### 4.4. Mechanical Properties From Compression Test

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Levy, G.N.; Schindel, R.; Kruth, J.P. Rapid manufacturing and rapid tooling with Layer Manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann.
**2003**, 52, 589–609. [Google Scholar] [CrossRef] - Lu, B.; Li, D.; Tian, X. Development trends in additive manufacturing and 3D printing. Engineering
**2015**, 1, 85–89. [Google Scholar] [CrossRef] [Green Version] - Carlier, E.; Marquette, S.; Peerboom, C.; Denis, L.; Benali, S.; Raquez, J.M.; Amighi, K. Investigation of the parameters used in fused deposition modeling of Poly (Lactic Acid) to optimize 3D printing sessions. Int. J. Pharm.
**2019**, 565, 367–377. [Google Scholar] [CrossRef] [PubMed] - Raj, S.A.; Muthukumaran, E.; Jayakrishna, K. A case study of 3D printed PLA and its mechanical properties. Mater. Today Proc.
**2018**, 5, 11219–11226. [Google Scholar] [CrossRef] - Mohd Pu’ad, N.A.S.; Abdul Haq, R.H.; Mohd Noh, H.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Mater. Today Proc.
**2020**, 29, 228–232. [Google Scholar] [CrossRef] - Dana, H.R.; Barbe, F.; Delbreilh, L.; Azzouna, M.B.; Guillet, A.; Breteau, T. Polymer additive manufacturing of ABS structure: Influence of printing direction on mechanical properties. J. Manuf. Process.
**2019**, 44, 288–298. [Google Scholar] [CrossRef] - Jiang, H.; Ziegler, H.; Zhang, Z.; Meng, H.; Chronopoulos, D.; Chen, Y. Mechanical properties of 3D printed architected polymer foams under large deformation. Mater. Des.
**2020**, 194, 108946. [Google Scholar] [CrossRef] - Elmrabet, N.; Siegkas, P. Dimensional considerations on the mechanical properties of 3D printed polymer parts. Polym. Test.
**2020**, 90, 106656. [Google Scholar] [CrossRef] - Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf.
**2018**, 20, 44–67. [Google Scholar] [CrossRef] - Duty, C.; Ajinjeru, C.; Kishore, V.; Compton, B.; Hmeidat, N.; Chen, X.; Liu, P.; Hassen, A.A.; Lindahl, J.; Kunc, V. What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. J. Manuf. Process.
**2018**, 35, 526–537. [Google Scholar] [CrossRef] - El Moumen, A.; Tarfaoui, M.; Lafdi, K. Additive manufacturing of polymer composites: Processing and modeling approaches. Compos. Part B Eng.
**2019**, 171, 166–182. [Google Scholar] [CrossRef] - Gebisa, A.W.; Lemu, H.G. Influence of 3D printing FDM process parameters on tensile property of ULTEM 9085. Procedia Manuf.
**2019**, 30, 331–338. [Google Scholar] [CrossRef] - Harshitha, V.; Rao, S.S. Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials. Mater. Today Proc.
**2019**, 19, 583–588. [Google Scholar] [CrossRef] - Lay, M.; Thajudin, N.L.N.; Hamid, Z.A.A.; Rusli, A.; Abdullah, M.K.; Shuib, R.K. Comparison of physical and mechanical properties of PLA, ABS and Nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B Eng.
**2019**, 176, 107341. [Google Scholar] [CrossRef] - Mishra, P.K.; Senthil, P. Prediction of in-plane stiffness of multi-material 3D printed laminate parts fabricated by FDM process using CLT and its mechanical behaviour under tensile load. Mater. Today Commun.
**2020**, 23, 100955. [Google Scholar] [CrossRef] - Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B Eng.
**2019**, 175, 107147. [Google Scholar] [CrossRef] - Parandoush, P.; Lin, D. A review on additive manufacturing of polymer-fiber composites. Compos. Struct.
**2017**, 182, 36–53. [Google Scholar] [CrossRef] - Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test.
**2018**, 69, 157–166. [Google Scholar] [CrossRef] - Sagias, V.D.; Giannakopoulos, K.I.; Stergiou, C. Mechanical properties of 3D printed polymer specimens. Struct. Integr. Procedia
**2018**, 10, 85–90. [Google Scholar] [CrossRef] - Sarvestani, H.Y.; Akbarzadeh, A.H.; Niknam, H.; Hermenean, K. 3D printed architected polymeric sandwich panels: Energy absorption and structural performance. Compos. Struct.
**2018**, 200, 886–909. [Google Scholar] [CrossRef] - Song, Y.; Li, Y.; Song, W.; Yee, K.; Lee, K.Y.; Tagarielli, V.L. Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des.
**2017**, 123, 154–164. [Google Scholar] [CrossRef] - Sugiyama, K.; Matsuzaki, R.; Ueda, M.; Todoroki, A.; Hirano, Y. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Compos. Part A Appl. Sci.
**2018**, 113, 114–121. [Google Scholar] [CrossRef] - Valino, A.D.; Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Messman, J.; Advincula, R.C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci.
**2019**, 98, 101162. [Google Scholar] [CrossRef] - Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng.
**2017**, 110, 442–458. [Google Scholar] [CrossRef] - Yadav, D.; Chhabra, D.; Gupta, R.K.; Phogat, A.; Ahlawat, A. Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS. Mater. Today Proc.
**2020**, 21, 1592–1604. [Google Scholar] [CrossRef] - Yao, T.; Deng, Z.; Zhang, K.; Li, S. A method to predict the ultimate tensile strength of 3D printing PolyLactic Acid (PLA) materials with different printing orientations. Compos. Part B Eng.
**2019**, 163, 393–402. [Google Scholar] [CrossRef] - Zhao, Y.; Chen, Y.; Zhou, Y. Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses. Mater. Des.
**2019**, 181, 108089. [Google Scholar] [CrossRef] - Afrose, M.F.; Masood, S.H.; Iovenitti, P.; Nikzad, M.; Sbarski, I. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Progr. Addit. Manuf.
**2016**, 1, 21–28. [Google Scholar] [CrossRef] - Hassanifard, S.; Hashemi, S.M. On the strain-life fatigue parameters of additive manufactured plastic materials through fused filament fabrication process. Addit. Manuf.
**2020**, 32, 100973. [Google Scholar] [CrossRef] - Ziemian, C.W.; Ziemian, R.D. Residual strength of additive manufactured ABS parts subjected to fatigue loading. Int. J. Fatig.
**2020**, 134, 105455. [Google Scholar] [CrossRef] - Torres, J.; Cotelo, J.; Karl, J.; Gordon, A.P. Mechanical property optimization of FDM PLA in shear with multiple objectives. J. Min. Met. Mat. Soc.
**2015**, 67, 1183–1193. [Google Scholar] [CrossRef] - Berzal, M.; Barajas, C.; del Mazo, D.; Caja, J.; Maresca, P. Simple filling patterns to model mechanical behaviour of FDM’s test pieces under torsion. Proc. Manuf.
**2017**, 13, 786–793. [Google Scholar] [CrossRef] - Brischetto, S.; Maggiore, P.; Ferro, C.G. Additive Manufacturing Technologies and Applications. In Printed Edition of the Special Issue Published in Technologies; MDPI AG: Basel, Switzerland, 2017; p. 180. ISBN 978-3-03842-548-9. [Google Scholar]
- Yang, L.; Harrysson, O.; West, H.; Cormier, D. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct.
**2015**, 69–70, 475–490. [Google Scholar] [CrossRef] - Bici, M.; Brischetto, S.; Campana, F.; Ferro, C.G.; Seclì, C.; Varetti, S.; Maggiore, P.; Mazza, A. Development of a multifunctional panel for aerospace use through SLM additive manufacturing. Procedia CIRP
**2018**, 67, 215–220. [Google Scholar] [CrossRef] - Brischetto, S.; Ciano, A.; Ferro, C.G. A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process. Curved Layer. Struct.
**2016**, 3, 202–213. [Google Scholar] [CrossRef] - Brischetto, S.; Ferro, C.G.; Torre, R.; Maggiore, P. Tensile and compression characterization of 3D printed ABS specimens for UAV applications. In Proceedings of the 3rd International Conference on Mechanical Properties of Materials (ICMPM 2016), Venice, Italy, 14–17 December 2016. [Google Scholar]
- Brischetto, S.; Ciano, A.; Raviola, A. Patent Application “Multipurpose Modular Drone with Adjustable Arms”. Patent Application 102,015,000,069,620, 5 November 2015. [Google Scholar]
- Brischetto, S.; Ferro, C.G.; Maggiore, P.; Torre, R. Compression tests of ABS specimens for UAV components produced via the FDM technique. Technologies
**2017**, 5, 1–25. [Google Scholar] - Ferro, C.G.; Brischetto, S.; Torre, R.; Maggiore, P. Characterization of ABS specimens produced via the 3D printing technology for drone structural components. Curved Layer. Struct.
**2016**, 3, 172–188. [Google Scholar] [CrossRef] [Green Version] - Brischetto, S.; Torre, R.; Ferro, C.G. Experimental evaluation of mechanical properties and machine process in Fused Deposition Modelling printed polymeric elements. In Proceedings of the AHFE 2019 International Conference on Additive Manufacturing, Modeling Systems and 3D Prototyping, Washington, DC, USA, 24–28 July 2019; pp. 377–389. [Google Scholar]
- Brischetto, S.; Ferro, C.G.; Torre, R.; Maggiore, P. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved Layer. Struct.
**2018**, 5, 80–94. [Google Scholar] [CrossRef] - Ferro, C.G.; Brischetto, S.; Maggiore, P.; Torre, R. Multi-material sandwich panel produced with desktop 3D printer. In Proceedings of the Mechcomp 3—3rd International Conference of Mechanics of Composites, Bologna, Italy, 4–7 July 2017. [Google Scholar]
- ASTM D638-14. Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2014; Available online: www.astm.org (accessed on 18 September 2020). [CrossRef]
- ASTM D695-15. Standard Test Method for Compressive Properties of Rigid Plastics; ASTM International: West Conshohocken, PA, USA, 2015; Available online: www.astm.org (accessed on 18 September 2020). [CrossRef]

**Figure 3.**Geometrical data (in millimeters) of the parallelepiped-shaped specimen for the compression tests.

**Figure 5.**Stress-strain ($\sigma $-$\u03f5$) tensile test curves for the first 6 specimens of family 1.

**Figure 6.**Stress-strain ($\sigma $-$\u03f5$) tensile test curves for the second 6 specimens of family 2.

**Figure 7.**Stress-strain ($\sigma $-$\u03f5$) compression test curves for the first 5 specimens of family 1.

**Figure 8.**Stress-strain ($\sigma $-$\u03f5$) compression test curves for the second 6 specimens of family 2.

**Figure 9.**Graphical summary, probability plot and process capability report for the dimension Y of the 12 produced specimens for tensile test.

**Figure 10.**Graphical summary, probability plot and process capability report for the dimension Z of the 12 produced specimens for tensile test.

**Figure 11.**Graphical summary, probability plot and process capability report for the weight W of the 12 produced specimens for tensile test.

**Figure 12.**Graphical summary, probability plot and process capability report for the dimension X of the 12 produced specimens for compression test.

**Figure 13.**Graphical summary, probability plot and process capability report for the dimension Y of the 12 produced specimens for compression test.

**Figure 14.**Graphical summary, probability plot and process capability report for the dimension Z of the 12 produced specimens for compression test.

**Figure 15.**Graphical summary, probability plot and process capability report for the weight W of the 12 produced specimens for compression test.

**Figure 16.**Graphical summary, probability plot and process capability report for the linear elastic Young modulus ${E}_{lin}$ of tensile test.

**Figure 17.**Graphical summary, probability plot and process capability report for the ultimate strength ${\sigma}_{max}$ of tensile test.

**Figure 18.**Graphical summary, probability plot and process capability report for the proportional limit stress ${\sigma}_{pro}$ of tensile test.

**Figure 19.**Graphical summary, probability plot and process capability report for the linear elastic Young modulus ${E}_{lin}$ of compression test.

**Table 1.**Measured geometrical data, weights and mass densities for the 12 produced specimens (divided in two families) for tensile tests.

Specimen (Family) | X [mm] | Y [mm] | Z [mm] | W [g] | $\mathit{\rho}$ [g/cm${}^{3}$] |
---|---|---|---|---|---|

1 (1) | - | 13.00 | 4.96 | 18.09 | 1.244 |

2 (1) | - | 13.00 | 4.93 | 18.05 | 1.241 |

3 (1) | - | 13.01 | 4.93 | 17.97 | 1.236 |

4 (1) | - | 13.07 | 4.96 | 18.11 | 1.245 |

5 (1) | - | 13.02 | 4.98 | 18.05 | 1.241 |

6 (1) | - | 13.04 | 4.92 | 18.12 | 1.246 |

7 (2) | - | 13.01 | 4.93 | 17.94 | 1.234 |

8 (2) | - | 12.96 | 4.92 | 18.00 | 1.238 |

9 (2) | - | 13.00 | 4.88 | 17.86 | 1.228 |

10 (2) | - | 13.01 | 4.91 | 17.92 | 1.232 |

11 (2) | - | 12.97 | 4.92 | 17.82 | 1.226 |

12 (2) | - | 13.02 | 4.89 | 17.96 | 1.235 |

TARGET | 57.00 | 13.00 | 5.00 | 18.18 | 1.250 |

**Table 2.**Measured geometrical data and weights for the 12 produced specimens (divided in two families) for compression tests.

Specimen (Family) | X [mm] | Y [mm] | Z [mm] | W [g] | $\mathit{\rho}$ [g/cm${}^{3}$] |
---|---|---|---|---|---|

1 (1) | 39.75 | 12.46 | 12.56 | 7.73 | 1.198 |

2 (1) | 39.77 | 12.49 | 12.58 | 7.77 | 1.204 |

3 (1) | 39.78 | 12.45 | 12.56 | 7.72 | 1.197 |

4 (1) | 39.80 | 12.49 | 12.59 | 7.77 | 1.204 |

5 (1) | 39.84 | 12.49 | 12.63 | 7.73 | 1.198 |

6 (1) | 39.80 | 12.43 | 12.60 | 7.68 | 1.190 |

7 (2) | 39.84 | 12.55 | 12.63 | 7.77 | 1.204 |

8 (2) | 39.79 | 12.55 | 12.62 | 7.79 | 1.207 |

9 (2) | 39.79 | 12.52 | 12.59 | 7.76 | 1.203 |

10 (2) | 39.84 | 12.49 | 12.61 | 7.74 | 1.200 |

11 (2) | 39.76 | 12.53 | 12.59 | 7.77 | 1.204 |

12 (2) | 39.83 | 12.46 | 12.60 | 7.71 | 1.195 |

TARGET | 40.00 | 12.70 | 12.70 | 8.06 | 1.250 |

**Table 3.**Collected mechanical data obtained from the tensile tests conducted on the two families of specimens.

Specimen (Family) | ${\mathit{E}}_{\mathit{lin}}$ [MPa] | ${\mathit{\sigma}}_{\mathit{max}}$ [MPa] | ${\mathit{\sigma}}_{\mathit{pro}}$ [MPa] |
---|---|---|---|

1 (1) | 2554.7 | 63.9 | 50.2 |

2 (1) | 2607.2 | 63.3 | 49.0 |

3 (1) | 2504.2 | 61.7 | 49.3 |

4 (1) | 2430.0 | 61.6 | 49.0 |

5 (1) | 2403.5 | 59.3 | 51.6 |

6 (1) | 2473.5 | 62.8 | 47.8 |

7 (2) | 2661.0 | 58.2 | 43.9 |

8 (2) | 2705.8 | 61.0 | 39.4 |

9 (2) | 2513.3 | 62.8 | 47.9 |

10 (2) | 2668.7 | 59.9 | 43.6 |

11 (2) | 2455.1 | 62.0 | 45.4 |

12 (2) | 2611.4 | 61.4 | 42.5 |

**Table 4.**Collected mechanical data obtained from the compression tests conducted on the two families of specimens.

Specimen (Family) | ${\mathit{E}}_{\mathit{lin}}$ [MPa] | ${\mathit{\sigma}}_{\mathit{max}}$ [MPa] | ${\mathit{\sigma}}_{\mathit{pro}}$ [MPa] |
---|---|---|---|

1 (1) | - | - | - |

2 (1) | 2053.4 | - | - |

3 (1) | 2041.0 | - | - |

4 (1) | 2027.5 | - | - |

5 (1) | 2026.8 | - | - |

6 (1) | 2031.5 | - | - |

7 (2) | 1990.4 | - | - |

8 (2) | 2093.0 | - | - |

9 (2) | 2048.5 | - | - |

10 (2) | 2016.4 | - | - |

11 (2) | 2033.1 | - | - |

12 (2) | 2023.5 | - | - |

**Table 5.**Summary of the capability analysis for the dimensions and weight of the produced specimens for the tensile test.

X | Y | Z | W | |
---|---|---|---|---|

All the 12 specimens | ||||

Mean value $\mathbf{\mu}$ | - | 13.0079 | 4.9274 | 17.9901 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | - | 0.029637 | 0.027820 | 0.097526 |

LSL | - | 12.8894 | 4.8161 | 17.6000 |

USL | - | 13.1265 | 5.0386 | 18.3802 |

AD-value | - | 0.369 | 0.313 | 0.223 |

P-value | - | 0.368 | 0.504 | 0.777 |

The first six specimens of the family 1 | ||||

Mean value $\mathbf{\mu}$ | - | 13.0222 | 4.9461 | 18.0648 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | - | 0.027642 | 0.022002 | 0.055869 |

The second six specimens of the family 2 | ||||

Mean value $\mathbf{\mu}$ | - | 12.9936 | 4.9086 | 17.9154 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | - | 0.026022 | 0.019363 | 0.066369 |

**Table 6.**Summary of the capability analysis for the dimensions and weight of the produced specimens for the compression test.

X | Y | Z | W | |
---|---|---|---|---|

All the 12 specimens | ||||

Mean value $\mathbf{\mu}$ | 39.7975 | 12.4904 | 12.5958 | 7.7447 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 0.032063 | 0.039194 | 0.023069 | 0.031206 |

LSL | 39.6692 | 12.3336 | 12.5036 | 7.6198 |

USL | 39.9258 | 12.6472 | 12.6881 | 7.8695 |

AD-value | 0.488 | 0.267 | 0.167 | 0.452 |

P-value | 0.180 | 0.619 | 0.916 | 0.225 |

The first six specimens of the family 1 | ||||

Mean value $\mathbf{\mu}$ | 39.7886 | 12.4667 | 12.5858 | 7.7335 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 0.030155 | 0.026442 | 0.026957 | 0.032561 |

The second six specimens of the family 2 | ||||

Mean value $\mathbf{\mu}$ | 39.8064 | 12.5142 | 12.6058 | 7.7558 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 0.034098 | 0.036423 | 0.014289 | 0.027980 |

**Table 7.**Summary of the capability analysis for the mechanical properties of the specimens subjected to the tensile test.

${\mathit{E}}_{\mathit{lin}}$ | ${\mathit{\sigma}}_{\mathit{max}}$ | ${\mathit{\sigma}}_{\mathit{pro}}$ | |
---|---|---|---|

All the 12 specimens | |||

Mean value $\mathbf{\mu}$ | 2549.0333 | 61.4917 | 46.6333 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 100.860861 | 1.684938 | 3.646501 |

LSL | 2145.5899 | 54.7519 | 32.0473 |

USL | 2952.4768 | 68.2314 | 61.2193 |

AD-value | 0.258 | 0.245 | 0.371 |

P-value | 0.652 | 0.697 | 0.363 |

The first six specimens of the family 1 | |||

Mean value $\mathbf{\mu}$ | 2495.5167 | 62.1000 | 49.4833 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 76.544717 | 1.638292 | 1.290607 |

The second six specimens of the family 2 | |||

Mean value $\mathbf{\mu}$ | 2602.5500 | 60.8833 | 43.7833 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 98.222375 | 1.635135 | 2.844937 |

**Table 8.**Summary of the capability analysis for the mechanical properties of the specimens subjected to the compression test.

${\mathit{E}}_{\mathit{lin}}$ | |
---|---|

All the 12 specimens | |

Mean value $\mathbf{\mu}$ | 2035.0091 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 25.549030 |

LSL | 1932.8130 |

USL | 2137.2052 |

AD-value | 0.444 |

P-value | 0.230 |

The first five specimens of the family 1 | |

Mean value $\mathbf{\mu}$ | 2036.0400 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 11.234901 |

The second six specimens of the family 2 | |

Mean value $\mathbf{\mu}$ | 2034.1500 |

Stand. dev. $\widehat{\mathbf{\sigma}}$ | 34.678221 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Brischetto, S.; Torre, R.
Tensile and Compressive Behavior in the Experimental Tests for PLA Specimens Produced via Fused Deposition Modelling Technique. *J. Compos. Sci.* **2020**, *4*, 140.
https://doi.org/10.3390/jcs4030140

**AMA Style**

Brischetto S, Torre R.
Tensile and Compressive Behavior in the Experimental Tests for PLA Specimens Produced via Fused Deposition Modelling Technique. *Journal of Composites Science*. 2020; 4(3):140.
https://doi.org/10.3390/jcs4030140

**Chicago/Turabian Style**

Brischetto, Salvatore, and Roberto Torre.
2020. "Tensile and Compressive Behavior in the Experimental Tests for PLA Specimens Produced via Fused Deposition Modelling Technique" *Journal of Composites Science* 4, no. 3: 140.
https://doi.org/10.3390/jcs4030140