Upcycling of Copper Scrap into High-Quality Powder for Additive Manufacturing: Processing, Characterization, and Sustainability Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Preparation
2.2. Ultrasonic Atomization
2.3. Characterization of Atomized Powders
2.4. Deposition of Atomized Powder
2.5. Life Cycle Assessment (LCA)
3. Results
3.1. Reclaimed Copper Scrap and Atomized Powders
3.2. Chemical Characterization
3.3. Particle Size Distribution
3.4. Morphology and Physical Properties
3.5. DOE on Single Tracks
3.6. Multi-Layer 3D Deposition of Recycled Copper Powders
3.7. Key Environmental Impact Results
3.7.1. Environmental Hotspots
3.7.2. Comparative Interpretation
4. Discussion
4.1. Refining of Copper from Scrap Metal
4.2. Compatibility of Recycled Powders with DED Process
4.3. Analysis of Material Response to DED Parameters and Discussion of the Obtained Structures
4.4. Environmental Assessment
5. Conclusions
- The methodology described in this study ensured an efficient way to upcycle copper metal from waste through transformation into powders by ultrasonic atomization. The final copper concentration was increased up to ~99.5% wt.% with minimal content of impurities.
- Printability tests demonstrated the compatibility of the atomized powders with DED manufacturing technology, overcoming the major challenges related to the unfavorable interactions between copper and IR laser.
- Recycled copper powders effectively reduced the environmental impact of feedstock manufacturing, resulting in a considerable reduction of global warming potential by over 70% as the key impact factor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Additive manufacturing |
DED | Directed Energy Deposition |
LCA | Life Cycle Assessment |
DMLS | Direct Metal Laser Sintering |
LPBF | Laser powder bed fusion |
XRF | X-ray fluorescence |
ICP-OES | Inductively Coupled Plasma–Optical Emission Spectroscopy |
SEM | Scanning electron microscopy |
PSD | Particle size distribution |
DOE | Design of experiment |
BBD | Box–Behnken Design |
HAZ | Heat-affected zone |
IR | Infrared |
EDM | Electrical discharge machining |
LOM | Light optical microscopy |
EPD | Environmental product declaration |
References
- International Energy Agency (IEA). The Role of Critical Minerals in Clean Energy Transitions. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 1 August 2025).
- International Renewable Energy Agency (IRENA). Geopolitics of the Energy Transition: Critical Materials. Available online: https://wwfint.awsassets.panda.org/downloads/irena_geopolitics_energy_transition_critical_materials_2023_1.pdf (accessed on 1 August 2025).
- Bonthula, S.; Bonthula, S.R.; Pothu, R.; Srivastava, R.K.; Boddula, R.; Radwan, A.B.; Al-Qahtani, N. Recent Advances in Copper-Based Materials for Sustainable Environmental Applications. Sustain. Chem. 2023, 4, 246–271. [Google Scholar] [CrossRef]
- Philibert, C.; Arndt, N. Re-Evaluating Copper Supply the Crucial Role of Technology; IFRI STUDIES: Paris, France, 2025. [Google Scholar]
- Baiocco, G.; Genna, S.; Salvi, D.; Ucciardello, N. Electrophoretic Deposition of Graphene Coating on Copper for Improved Thermoelectric Performance of Wire Rods. Int. J. Adv. Manuf. Technol. 2024, 133, 5761–5776. [Google Scholar] [CrossRef]
- Vahedi Nemani, A.; Ghaffari, M.; Sabet Bokati, K.; Valizade, N.; Afshari, E.; Nasiri, A. Advancements in Additive Manufacturing for Copper-Based Alloys and Composites: A Comprehensive Review. J. Manuf. Mater. Process. 2024, 8, 54. [Google Scholar] [CrossRef]
- Cao, H.; Yuan, J.; Wu, X.; Li, T.; Wang, L.; Suhr, J.; Zhang, Z. Micron- and Nano-Sized Copper Sintering Pastes: Materials, Processes, and Applications. Mater. Des. 2025, 256, 114291. [Google Scholar] [CrossRef]
- Li, X.; Ma, B.; Wang, C.; Chen, Y. Sustainable Recovery and Recycling of Scrap Copper and Alloy Resources: A Review. Sustain. Mater. Technol. 2024, 41, e01026. [Google Scholar] [CrossRef]
- Wang, T.; Berrill, P.; Zimmerman, J.; Hertwich, E. Correction to “Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit”. Environ. Sci. Technol. 2023, 57, 7644. [Google Scholar] [CrossRef] [PubMed]
- Montelione, A.; Ghods, S.; Schur, R.; Wisdom, C.; Arola, D.; Ramulu, M. Powder Reuse in Electron Beam Melting Additive Manufacturing of Ti6Al4V: Particle Microstructure, Oxygen Content and Mechanical Properties. Addit. Manuf. 2020, 35, 101216. [Google Scholar] [CrossRef]
- Agnusdei, L.; Del Prete, A. Additive Manufacturing for Sustainability: A Systematic Literature Review. Sustain. Futures 2022, 4, 100098. [Google Scholar] [CrossRef]
- Karimi, N.; Fayazfar, H. Development of Highly Filled Nickel-Polymer Feedstock from Recycled and Biodegradable Resources for Low-Cost Material Extrusion Additive Manufacturing of Metals. J. Manuf. Process 2023, 107, 506–514. [Google Scholar] [CrossRef]
- Slotwinski, J.A.; Garboczi, E.J.; Stutzman, P.; Ferraris, C.; Watson, S.; Peltz, M. Characterization of Metal Powders Used for Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 460–493. [Google Scholar] [CrossRef]
- Benedetti, M.; Perini, M.; Vanazzi, M.; Giorgini, A.; Macoretta, G.; Menapace, C. Atomized Scrap Powder Feedstock for Sustainable Inconel 718 Additive Manufacturing via LPBF: A Study of Static and Fatigue Properties. Prog. Addit. Manuf. 2023, 9, 1843–1856. [Google Scholar] [CrossRef]
- Vanazzi, M.; Cabrioli, M.; Mondora, L.E.; Giorgini, A.; Perini, M.; Amirabdollahian, S. Highly Sustainable Additive Manufacturing Inconel 718 Powder from Recycled Sources. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2024, 67, 133–140. [Google Scholar]
- Jiang, Q.; Zhang, P.; Yu, Z.; Shi, H.; Wu, D.; Yan, H.; Ye, X.; Lu, Q.; Tian, Y. A Review on Additive Manufacturing of Pure Copper. Coatings 2021, 11, 740. [Google Scholar] [CrossRef]
- Horn, T.; Gamzina, D. Additive Manufacturing of Copper and Copper Alloys. In ASM Handbook Volume 24: Additive Manufacturing Processes; ASM International: Materials Park, OH, USA, 2020; pp. 388–418. ISBN 978-1-62708-290-7. [Google Scholar]
- Bhatt, B.; Martucci, A.; Biamino, S.; Ugues, D.; Bondioli, F.; Montanaro, L.; Lombardi, M.; Fino, P. Current Trends in Electron Beam and Laser Powder Bed Fusion Additive Manufacturing of Copper Alloys: Composition, Defects, Properties, and Challenges. Mater. Des. 2025, 253, 113742. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Lu, Q.; Yan, H.; Shi, H.; Yu, Z.; Sun, T.; Li, R.; Wang, Q.; Wu, Y.; et al. Application and Development of Blue and Green Laser in Industrial Manufacturing: A Review. Opt. Laser Technol. 2024, 170, 110202. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Kaufmann, K.; Vecchio, K. Directed Energy Deposition of Pure Copper Using Blue Laser. J. Manuf. Process 2023, 85, 314–322. [Google Scholar] [CrossRef]
- Siva Prasad, H.; Brueckner, F.; Volpp, J.; Kaplan, A.F. Laser metal deposition of copper on diverse metals using green laser sources. Int. J. Adv. Manuf. Technol. 2020, 107, 1559–1568. [Google Scholar] [CrossRef]
- Aghayar, Y.; Moazzen, P.; Behboodi, B.; Shahriari, A.; Shakerin, S.; Lloyd, A.; Mohammadi, M. Laser Powder Bed Fusion of Pure Copper Electrodes. Mater. Des. 2024, 239, 112742. [Google Scholar] [CrossRef]
- Moghimian, P.; Poirié, T.; Habibnejad-Korayem, M.; Zavala, J.A.; Kroeger, J.; Marion, F.; Larouche, F. Metal Powders in Additive Manufacturing: A Review on Reusability and Recyclability of Common Titanium, Nickel and Aluminum Alloys. Addit. Manuf. 2021, 43, 102017. [Google Scholar] [CrossRef]
- ASTM F1877-16; Standard Practice for Characterization of Particles. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2016.
- ISO 3310-1:2016; Test Sieves—Technical Requirements and Testing—Part 1: Test Sieves of Metal Wire Cloth. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- ISO 2591-1:1988; Test Sieving—Part 1: Methods Using Test Sieves of Woven Wire Cloth and Perforated Metal Plate. International Organization for Standardization (ISO): Geneva, Switzerland, 1988.
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Steen, W.; Mazumder, J. Laser Material Processing, 4th ed.; Springer: London, UK, 2010; ISBN 978-1-84996-061-8. [Google Scholar]
- Carvalho, S.; Siqueira, R.; Fernandes de Lima, M.S. Phase Separation and Development of the Microstructure for Stainless Steel to Copper Alloy Weld Joints Using a Fiber Laser. J. Aerosp. Technol. Manag. 2019, 11, e4319. [Google Scholar] [CrossRef]
- da Cruz, J.R.; Colombes, A.; d’Oliveira, A.S.C.M. Interdiffusion between 316L Stainless Steel and Copper in Coatings Processed by High Velocity Oxyfuel. Mater. Perform. Charact. 2023, 12, 376–395. [Google Scholar] [CrossRef]
- Yadav, S.; Paul, C.P.; Jinoop, A.N.; Rai, A.K.; Bindra, K.S. Laser Directed Energy Deposition Based Additive Manufacturing of Copper: Process Development and Material Characterizations. J. Manuf. Process 2020, 58, 984–997. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Niu, R.; Bayat, M.; Zhou, Y.; Yin, Y.; Tan, Q.; Liu, S.; Hattel, J.H.; Li, M.; et al. Manufacturing of high strength and high conductivity copper with laser powder bed fusion. Nat. Comm. 2024, 15, 1283. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Wang, L.; Zhang, S.; Yang, C.; Chia, H.Y.; Wu, G.; Hu, Z.; Ding, J.; Yan, W.; Zhang, Y.; et al. Oxide-dispersion-enabled laser additive manufacturing of high-resolution copper. Nat. Comm. 2025, 16, 3234. [Google Scholar] [CrossRef]
- Lanzutti, A.; Marin, E. The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review. Metals 2024, 14, 886. [Google Scholar] [CrossRef]
- Dean, A.; Voss, D. Design and Analysis of Experiments, 1st ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Shamsaei, N.; Yadollahi, A.; Bian, L.; Thompson, S.M. An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control. Addit. Manuf. 2015, 8, 12–35. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch Relation and Boundary Strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Jadhav, S.D.; Goossens, L.R.; Kinds, Y.; Van Hooreweder, B.; Vanmeensel, K. Laser-based powder bed fusion additive manufacturing of pure copper. Addit. Manuf. 2021, 42, 101990. [Google Scholar] [CrossRef]
- Ning, Z.; Hu, H.; Zhao, T.; Wang, S.; Song, M. Enhanced electrical and mechanical properties of additively manufactured pure copper with green laser. J. Mater. Process. Technol. 2024, 334, 118615. [Google Scholar] [CrossRef]
Factors | Name | Units | Type | Factors Levels | ||
---|---|---|---|---|---|---|
−1 | 0 | +1 | ||||
A | Powder feed rate | g/min | Numeric | 6 | 8 | 10 |
B | Laser power | W | Numeric | 1800 | 2000 | 2200 |
C | Scanning speed | mm/min | Numeric | 600 | 700 | 800 |
Element | Raw Material Before Atomization [wt. %] | Atomized Copper Powder [wt. %] |
---|---|---|
Cu | 99.21 ± 0.088 | Balance |
O | N/A | 0.039 ± 0.008 |
Al | N/D | 0.01 |
Cr | N/D | 0.28 |
Fe | 0.043 ± 0.008 | 0.01 |
P | N/D | <0.01 |
Mg | N/D | <0.01 |
Mn | N/D | <0.01 |
Mo | N/D | <0.01 |
Ni | N/D | 0.01 |
Pb | N/D | 0.03 |
Si | N/D | 0.01 |
Sn | 0.69 ± 0.063 | 0.12 |
Zn | N/D | <0.01 |
Zr | N/D | <0.01 |
Sample | A Powder Feed Rate (g/min) | B Laser Power (W) | C Laser Scan Speed (mm/min) | R1 Width (mm) | R Height (mm) | R3 HAZ (mm) |
---|---|---|---|---|---|---|
1 | 10 | 2000 | 600 | 3.20 | 0.80 | 0.50 |
2 | 10 | 1800 | 700 | 2.79 | 0.63 | 0.36 |
3 | 6 | 2200 | 700 | 3.09 | 0.46 | 0.55 |
4 | 10 | 2200 | 700 | 3.29 | 0.73 | 0.54 |
5 | 6 | 2000 | 600 | 2.99 | 0.52 | 0.62 |
6 | 6 | 1800 | 700 | 2.76 | 0.47 | 0.49 |
7 | 6 | 2000 | 800 | 2.81 | 0.45 | 0.51 |
8 | 10 | 2000 | 800 | 2.97 | 0.58 | 0.39 |
9 | 8 | 1800 | 600 | 3.09 | 0.70 | 0.52 |
10 | 8 | 2200 | 600 | 3.19 | 0.69 | 0.57 |
11 | 8 | 1800 | 800 | 2.83 | 0.53 | 0.45 |
12 | 8 | 2200 | 800 | 2.99 | 0.54 | 0.49 |
13 | 8 | 2000 | 700 | 3.07 | 0.61 | 0.54 |
14 | 8 | 2000 | 700 | 2.98 | 0.62 | 0.55 |
15 | 8 | 2000 | 700 | 3.03 | 0.61 | 0.51 |
Powder Flow Rate (g/min) | Laser Power (W) | Laser Scanning Speed (mm/min) | Hatch Distance (mm) | Layer Thickness (mm) | Carrier Gas Flow (L/min) |
---|---|---|---|---|---|
10 | 2000 | 750 | 1.65 | 0.7 | 4.5 |
Impact Category | UoM | Conventional | f3nice | % Reduction vs. Conventional |
---|---|---|---|---|
Acidification | kg SO2-eq | 2.74 × 100 | 4.43 × 10−2 | 98.4% |
Eutrophication | kg PO43−-eq | 4.58 × 100 | 1.98 × 10−2 | 99.6% |
Global warming (GWP100a) | kg CO2-eq | 9.41 × 101 | 2.52 × 101 | 73.2% |
Photochemical oxidation | kg NMVOC-eq | 1.73 × 100 | 3.54 × 10−2 | 98.0% |
Abiotic depletion, elements | kg Sb-eq | 2.88 × 10−2 | 5.71 × 10−5 | 99.8% |
Abiotic depletion, fossil fuels | MJ | 9.78 × 102 | 1.17 × 102 | 88.0% |
Water scarcity | m3-eq | 4.82 × 101 | 1.15 × 101 | 76.1% |
Ozone layer depletion (ODP) | kg CFC-11-eq | 1.02 × 10−6 | 2.26 × 10−7 | 77.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrioli, M.; Silva Colmenero, M.; Gholamzadeh, S.; Vanazzi, M.; Amirabdollahian, S.; Perini, M.; Łacisz, W.; Kalicki, B. Upcycling of Copper Scrap into High-Quality Powder for Additive Manufacturing: Processing, Characterization, and Sustainability Assessment. J. Manuf. Mater. Process. 2025, 9, 320. https://doi.org/10.3390/jmmp9090320
Cabrioli M, Silva Colmenero M, Gholamzadeh S, Vanazzi M, Amirabdollahian S, Perini M, Łacisz W, Kalicki B. Upcycling of Copper Scrap into High-Quality Powder for Additive Manufacturing: Processing, Characterization, and Sustainability Assessment. Journal of Manufacturing and Materials Processing. 2025; 9(9):320. https://doi.org/10.3390/jmmp9090320
Chicago/Turabian StyleCabrioli, Mattia, María Silva Colmenero, Sepideh Gholamzadeh, Matteo Vanazzi, Sasan Amirabdollahian, Matteo Perini, Wojciech Łacisz, and Bartosz Kalicki. 2025. "Upcycling of Copper Scrap into High-Quality Powder for Additive Manufacturing: Processing, Characterization, and Sustainability Assessment" Journal of Manufacturing and Materials Processing 9, no. 9: 320. https://doi.org/10.3390/jmmp9090320
APA StyleCabrioli, M., Silva Colmenero, M., Gholamzadeh, S., Vanazzi, M., Amirabdollahian, S., Perini, M., Łacisz, W., & Kalicki, B. (2025). Upcycling of Copper Scrap into High-Quality Powder for Additive Manufacturing: Processing, Characterization, and Sustainability Assessment. Journal of Manufacturing and Materials Processing, 9(9), 320. https://doi.org/10.3390/jmmp9090320