Investigation on the Mechanical Properties of White Layers by Cutting and Burnishing Coupling Effect in BTA Deep Hole Drilling
Abstract
1. Introduction
2. Materials and Methods
2.1. BTA Deep Hole Drilling Tests
2.2. Sample Preparations
2.3. Measurements and Characterizations
2.4. Drilling and Burnishing Mechanism
3. Results and Discussion
3.1. White Layer Formation Characteristics in Different Zones
3.1.1. Cutting Edge Radius Zone
3.1.2. Cutting–Burnishing Sharp Corner Zone
3.1.3. Guide Pad Edge Zone
3.2. White Layer Characteristics at Different Feedrates
3.3. Morphological Characteristics of Guide Pad Wear
4. Conclusions
- The formation of the white layer at the borehole bottom during deep hole drilling is attributed to the cutting–burnishing effect. Rapid quenching at the sharp corner, combined with the secondary burnishing effect by the guide pad, results in lower hardness on the cut surface (5.5 GPa) compared to the burnished surface (6 GPa). Repeated severe elastoplastic deformation further increases the hardness at the guide pad edge to 9.758 GPa—27.3% higher than that in the cutting edge radius zone. In all regions, the hardness gradually decreases with increasing depth from the machined surface, and grain refinement is identified as the primary strengthening mechanism.
- Within the feedrate range of 0.0317–0.057 mm/rev, the white layer thickness exhibits a U-shaped distribution, which is attributed to the dynamic balance between thermal and mechanical effects during BTA deep hole drilling. At lower feedrate, stronger thermomechanical effects lead to an increased white layer thickness up to 5 μm. At the moderate feedrate (0.044 mm/rev), the layer reaches a minimum thickness of 4.326 μm and exhibits high uniformity.
- The wear behavior of guide pads is strongly influenced by their geometric structure and coating material. The TiN-coated guide pad demonstrated superior wear resistance; however, it experienced fatigue cracking and adhesive wear in the initial guiding zone, ultimately failing due to stress-induced progressive spalling. In contrast, the TiCN/Al2O3-coated guide pad features a rounded corner that promotes a more favorable stress gradient, thereby mitigating initial zone damage. Instead, it undergoes adhesive wear and brittle spalling mainly in the mid-to-rear region, following a stepwise degradation process of “Al2O3 failure to TiCN exposure”.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khameneh, M.J.; Azadi, M. Evaluation of high-cycle bending fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron of crankshafts. Eng. Fail. Anal. 2018, 85, 189–200. [Google Scholar] [CrossRef]
- Li, X.; Shao, W.; Tang, J.; Ding, H.; Zhou, W. An investigation of the contact fatigue characteristics of an RV reducer crankshaft, considering the hardness gradients and initial residual stress. Materials 2022, 15, 7850. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, J.; Du, J.; Li, B.; Zhang, J.; Su, G. Investigation on Surface Integrity of Nodular Cast Iron QT700-2 in Shape Adaptive Grinding. Micromachines 2023, 14, 276. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhai, C.; He, W.; Lu, Y.; Zhang, B. Experimental investigation of tool wear and machining quality of BTA deep-hole drilling in low-carbon alloy steel SA-5083. Materials 2023, 16, 6686. [Google Scholar] [CrossRef] [PubMed]
- Biermann, D.; Bleicher, F.; Heisel, U.; Klocke, F.; Möhring, H.C.; Shih, A. Deep hole drilling. CIRP Ann. 2018, 67, 673–694. [Google Scholar] [CrossRef]
- Javaheri, V.; Sadeghpour, S.; Karjalainen, P.; Lindroos, M.; Haiko, O.; Sarmadi, N.; Pallaspuro, S.; Valtonen, K.; Pahlevani, F.; Laukkanen, A.; et al. Formation of nanostructured surface layer, the white layer, through solid particles impingement during slurry erosion in a martensitic medium-carbon steel. Wear 2022, 496, 204301. [Google Scholar] [CrossRef]
- Hossain, R.; Pahlevani, F.; Witteveen, E.; Banerjee, A.; Joe, B.; Prusty, B.G.; Dippenaar, R.; Sahajwalla, V. Hybrid structure of white layer in high carbon steel–Formation mechanism and its properties. Sci. Rep. 2017, 7, 13288. [Google Scholar] [CrossRef]
- Choi, Y. Influence of a white layer on the performance of hard machined surfaces in rolling contact. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 1207–1215. [Google Scholar] [CrossRef]
- Kato, T.; Sugeta, A.; Nakayama, E. Investigation of influence of white layer geometry on spalling property in railway wheel steel. Wear 2011, 271, 400–407. [Google Scholar] [CrossRef]
- Liu, M.; Gao, G.; Fan, Y.; Liu, Z.; Gui, X.; Yang, Z. Influence of stratified tribologically transformed structure layers on contact fatigue crack initiation of bainitic rail steel. Wear 2024, 552, 205436. [Google Scholar] [CrossRef]
- Saxena, A.K.; Kumar, A.; Herbig, M.; Brinckmann, S.; Dehm, G.; Kirchlechner, C. Micro fracture investigations of white etching layers. Mater. Des. 2019, 180, 107892. [Google Scholar] [CrossRef]
- Jin, D.; Liu, Z.; Yi, W.; Su, G. Influence of cutting speed on surface integrity for powder metallurgy nickel-based superalloy FGH95. Int. J. Adv. Manuf. Technol. 2011, 56, 553–559. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Z.; Ren, Y.; Mao, C.; Li, W. Experimental research material characteristics effect on white layers formation in grinding of hardened steel. Int. J. Adv. Manuf. Technol. 2013, 66, 1555–1561. [Google Scholar] [CrossRef]
- Baumann, G.; Fecht, H.J.; Liebelt, S. Formation of white-etching layers on rail treads. Wear 1996, 191, 133–140. [Google Scholar] [CrossRef]
- Alok, A.; Das, M. White layer analysis of hard turned AISI 52100 steel with the fresh tip of newly developed HSN2 coated insert. J. Manuf. Process. 2019, 46, 16–25. [Google Scholar] [CrossRef]
- Kumar, M.S.; Shafeer, P.K.; Ross, N.S.; Ishfaq, K.; Adediran, A.A.; Akinwande, A.A. A comprehensive machinability comparison during milling of AISI 52100 steel under dry and cryogenic cutting conditions. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 364–376. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Cai, Y.; Luo, X.; Ma, H.; Song, Q.; Xiong, Z. Advancements in material removal mechanism and surface integrity of high speed metal cutting: A review. Int. J. Mach. Tools Manuf. 2021, 166, 103744. [Google Scholar] [CrossRef]
- Thakur, A.; Gangopadhyay, S. State-of-the-art in surface integrity in machining of nickel-based super alloys. Int. J. Mach. Tools Manuf. 2016, 100, 25–54. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Lv, H. Tool wear and formation mechanism of white layer when hard milling H13 steel under different cooling/lubrication conditions. Adv. Mech. Eng. 2014, 6, 949308. [Google Scholar] [CrossRef]
- Yue, C.; Liu, X.; Ma, J.; Liu, Z.; Liu, F.; Yang, Y. Hardening effect on machined surface for precise hard cutting process with consideration of tool wear. Chin. J. Mech. Eng. 2014, 27, 1249–1256. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wang, B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review. Measurement 2019, 132, 150–181. [Google Scholar] [CrossRef]
- Huang, X.; Ren, Y.; Zhou, Z.; Xiao, H. Experimental study on white layers in high-speed grinding of AISI52100 hardened steel. J. Mech. Sci. Technol. 2015, 29, 1257–1263. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, Y.; Wang, Z.; Wen, X.; Yin, G.; Zhang, H.; Qi, Y. Experimental study of Ni-based single-crystal superalloy: Microstructure evolution and work hardening of ground subsurface. Arch. Civ. Mech. Eng. 2021, 21, 43. [Google Scholar] [CrossRef]
- Akcan, S.; Shah, W.I.S.; Moylan, S.P.; Chandrasekar, S.; Chhabra, P.N.; Yang, T.Y. Formation of white layers in steels by machining and their characteristics. Metall. Mater. Trans. A 2002, 33, 1245–1254. [Google Scholar] [CrossRef]
- Strodick, S.; Berteld, K.; Schmidt, R.; Biermann, D.; Zabel, A.; Walther, F. Influence of cutting parameters on the formation of white etching layers in BTA deep hole drilling. tm-Tech. Mess. 2020, 87, 674–682. [Google Scholar] [CrossRef]
- Hayajneh, M.T. Hole quality in deep hole drilling. Mater. Manuf. Process. 2001, 16, 147–164. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, X.; Bo, A.; Li, Y.; Zhan, H.; Gu, Y. A multiscale evaluation of the surface integrity in boring trepanning association deep hole drilling. Int. J. Mach. Tools Manuf. 2017, 123, 48–56. [Google Scholar] [CrossRef]
- Li, X.; Zhai, C.; Wang, C.; Wu, R.; Zhang, C.; Zhang, S.; Guo, B.; Su, Y. Experimental Investigation and Modeling of Surface Roughness in BTA Deep Hole Drilling with Vibration Assisted. Materials 2024, 18, 56. [Google Scholar] [CrossRef]
- Sakuma, K.; Taguchi, K.; Katsuki, A.; Kakeyama, H. Self-guiding action of deep-hole-drilling tools. CIRP Ann. 1981, 30, 311–315. [Google Scholar] [CrossRef]
- Felinks, N.; Rinschede, T.; Biermann, D.; Stangier, D.; Tillmann, W.; Fuß, M.; Abrahams, H. Investigation into deep hole drilling of austenitic steel with advanced tool solutions. Int. J. Adv. Manuf. Technol. 2022, 118, 1087–1100. [Google Scholar] [CrossRef]
- Morozow, D.; Barlak, M.; Werner, Z.; Pisarek, M.; Konarski, P.; Zagórski, J.; Rucki, M.; Chałko, L.; Łagodziński, M.; Narojczyk, J.; et al. Wear resistance improvement of cemented tungsten carbide deep-hole drills after ion implantation. Materials 2021, 14, 239. [Google Scholar] [CrossRef]
- Tamura, S.; Matsumura, T. Cutting process in non-step drilling of deep hole with tool wear progress. J. Adv. Mech. Des. Syst. Manuf. 2024, 18, JAMDSM0045. [Google Scholar] [CrossRef]
- Guo, L.; Liang, Z.; Du, Y.; Sun, Y.; Shi, J.; Zhang, R.; Su, Z. Study on the cutting performance of AlTiN/AlTiSiN composite coating tool in deep-hole pull boring tool of GH4169. Tribol. Int. 2025, 202, 110236. [Google Scholar] [CrossRef]
- Rivero, A.; Aramendi, G.; Herranz, S.; Lacalle, L.N. An experimental investigation of the effect of coatings and cutting parameters on the dry drilling performance of aluminium alloys. Int. J. Adv. Manuf. Technol. 2006, 28, 1–11. [Google Scholar] [CrossRef]
- Griffiths, B.J.; Grieve, R.J. The role of the burnishing pads in the mechanics of the deep drilling process. Int. J. Prod. Res. 1985, 23, 647–655. [Google Scholar] [CrossRef]
- Jakes, J.E.; Frihart, C.R.; Beecher, J.F.; Moon, R.J.; Resto, P.J.; Melgarejo, Z.H.; Suárez, O.M.; Baumgart, H.; Elmustafa, A.A.; Stone, D.S. Nanoindentation near the edge. J. Mater. Res. 2009, 24, 1016–1031. [Google Scholar] [CrossRef]
- Pharr, G.M.; Tsui, T.Y.; Bolshakov, A.; Oliver, W.C. Effects of residual stress on the measurement of hardness and elastic modulus using nanoindentation. MRS Online Proc. Libr. (OPL) 1994, 338, 127. [Google Scholar] [CrossRef]
- Domnich, V.; Gogotsi, Y.; Dub, S. Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 2000, 76, 2214–2216. [Google Scholar] [CrossRef]
- Li, B.; Huang, C.; Chen, Z.; Liu, H.; Niu, J.; Wang, J.; Wang, J.; Xu, L.; Huang, S. Change of the machined hole wall surface roughness, microstructure and microhardness of low alloy steel caused by drill-guide-pads during BTA deep hole drilling. Int. J. Adv. Manuf. Technol. 2025, 139, 1595–1605. [Google Scholar] [CrossRef]
- Strodick, S.; Schmidt, R.; Biermann, D.; Zabel, A.; Walther, F. Influence of the cutting edge on the surface integrity in BTA deep hole drilling-part 2: Residual stress, microstructure and microhardness. Procedia CIRP 2022, 108, 276–281. [Google Scholar] [CrossRef]
- Zhang, J.; Du, J.; Li, B.; Su, J. Investigation on white layer formation in dry high-speed milling of nickel-based superalloy GH4169. Machines 2023, 11, 406. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Fang, H.S.; Huang, W.G. A study on wear resistance of the white layer. Tribol. Int. 1996, 29, 425–428. [Google Scholar] [CrossRef]
- Bai, Y.L. Adiabatic shear banding. Res. Mech. 1990, 31, 133–203. [Google Scholar]
- Österle, W.; Rooch, H.; Pyzalla, A.; Wang, L. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction. Mater. Sci. Eng. A 2001, 303, 150–157. [Google Scholar] [CrossRef]
Parameter | Unit |
---|---|
Drilling diameter range | Ø20–Ø80 mm |
Spindle speed range | 61–1000 r/min (12 steps) |
Feed speed range | 0.005–4.1 mm/rev (stepless) |
Oil supply pressure | 2.5 MPa |
Parameter | Unit | Value |
---|---|---|
Feed | mm/rev | 0.024, 0.0317, 0.044, 0.057 |
Speed | r/min | 630 |
Depth | mm | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yan, P.; Guo, H.; Chen, Z.; Hou, Z.; Li, Y. Investigation on the Mechanical Properties of White Layers by Cutting and Burnishing Coupling Effect in BTA Deep Hole Drilling. J. Manuf. Mater. Process. 2025, 9, 319. https://doi.org/10.3390/jmmp9090319
Zhang H, Yan P, Guo H, Chen Z, Hou Z, Li Y. Investigation on the Mechanical Properties of White Layers by Cutting and Burnishing Coupling Effect in BTA Deep Hole Drilling. Journal of Manufacturing and Materials Processing. 2025; 9(9):319. https://doi.org/10.3390/jmmp9090319
Chicago/Turabian StyleZhang, Huang, Pengxiang Yan, Haoran Guo, Ze Chen, Zihao Hou, and Yaoming Li. 2025. "Investigation on the Mechanical Properties of White Layers by Cutting and Burnishing Coupling Effect in BTA Deep Hole Drilling" Journal of Manufacturing and Materials Processing 9, no. 9: 319. https://doi.org/10.3390/jmmp9090319
APA StyleZhang, H., Yan, P., Guo, H., Chen, Z., Hou, Z., & Li, Y. (2025). Investigation on the Mechanical Properties of White Layers by Cutting and Burnishing Coupling Effect in BTA Deep Hole Drilling. Journal of Manufacturing and Materials Processing, 9(9), 319. https://doi.org/10.3390/jmmp9090319