Microstructure and Mechanical Properties of Al6060/TiB2 Aluminum Matrix Composites Produced via Ultrasonically Assisted Stir Casting and Radial-Shear Rolling
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Fabrication of Composite
2.3. Material Characterization
3. Results and Discussion
3.1. EDS and XRD
3.2. SEM and EBSD
3.3. Mechanical Properties
4. Conclusions
- 1.
- Microstructure. Ultrasonic treatment of the melt during stir casting ensured a uniform distribution of TiB2 particles (~2 wt.%) within the aluminum matrix, preventing the formation of pronounced agglomerates and reaction layers at the particle–matrix interface. Subsequent RSR further refined the grain structure (reducing the average size to 4–6 μm in Al6060/TiB2–R compared to 12–15 μm in Al6060–R) and reduced porosity relative to the as-cast state.
- 2.
- Phase composition. XRD and EDS analyses confirmed that the reinforcing phase is preserved as discrete TiB2 particles without the formation of intermetallic compounds such as Al3Ti or AlB2. In rolled samples, enhanced texture effects of the aluminum matrix were observed: the relative intensities of the main Al reflections changed, with (200) and (220) becoming more pronounced than (111), consistent with deformation-induced texture evolution. Partial alignment of TiB2 particles along the deformation direction was also observed.
- 3.
- Mechanical properties. The as-cast Al6060–C alloy exhibits low strength (UTS~103 MPa, YS~62 MPa) but high ductility (~19.5%). The addition of 2 wt.% TiB2 in the as-cast condition (Al6060/TiB2–C) increases strength (UTS~135 MPa, YS~91 MPa) but reduces elongation to ~12%. RSR of the unreinforced alloy (Al6060–R) improves strength (UTS~145 MPa, YS~99 MPa) through grain refinement and defect reduction, while retaining satisfactory ductility (~12%). The rolled composite (Al6060/TiB2–R) demonstrates the highest performance, with UTS~157 MPa, YS~109 MPa, microhardness ~76 HV0.2, and ductility of ~9%. These improvements are attributed to a combined effect of grain refinement (Hall–Petch mechanism), dispersion strengthening by TiB2 particles (Orowan mechanism), as well as reduced porosity and improved particle distribution uniformity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nartu, M.S.K.K.Y.; Agrawal, P. Additive manufacturing of metal matrix composites. Mater. Des. 2025, 252, 113609. [Google Scholar] [CrossRef]
- Parikh, V.K.; Patel, V.; Pandya, D.P.; Andersson, J. Current status on manufacturing routes to produce metal matrix composites: State-of-the-art. Heliyon 2023, 9, e13558. [Google Scholar] [CrossRef] [PubMed]
- Metal Matrix Composites Market Size, Suppliers to 2033. Available online: https://straitsresearch.com/report/metal-matrix-composites-market (accessed on 20 August 2025).
- Kar, A.; Sharma, A.; Kumar, S. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites. Crystals 2024, 14, 412. [Google Scholar] [CrossRef]
- Ujah, C.O.; Kallon, D.V.V. Trends in Aluminium Matrix Composite Development. Crystals 2022, 12, 1357. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Umer, R.; Khan, K.A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications. Results Eng. 2023, 20, 101372. [Google Scholar] [CrossRef]
- Singh, M.; Garg, H.K.; Maharana, S.; Muniappan, A.; Loganathan, M.K.; Nguyen, T.V.T.; Vijayan, V. Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability. J. Compos. Sci. 2023, 7, 244. [Google Scholar] [CrossRef]
- Muribwathoho, O.; Msomi, V.; Mabuwa, S. Metal Matrix Composite Fabricated with 5000 Series Marine Grades of Aluminium Using FSP Technique: State of the Art Review. Appl. Sci. 2022, 12, 12832. [Google Scholar] [CrossRef]
- Akbari, T.; Ansari, A.; Rahimi Pishbijari, M. Influence of aluminum alloys on protection performance of metal matrix composite armor reinforced with ceramic particles under ballistic impact. Ceram. Int. 2023, 49, 30937–30950. [Google Scholar] [CrossRef]
- Garg, P.; Jamwal, A.; Kumar, D.; Sadasivuni, K.K.; Hussain, C.M.; Gupta, P. Advance research progresses in aluminium matrix composites: Manufacturing & applications. J. Mater. Res. Technol. 2019, 8, 4924–4939. [Google Scholar] [CrossRef]
- Ramanathan, A.; Krishnan, P.K.; Muraliraja, R. A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 2019, 42, 213–245. [Google Scholar] [CrossRef]
- Bhowmik, A.; Kumar, R.; Beemkumar, N.; Kumar, A.V.; Singh, G.; Kulshreshta, A.; Mann, V.S.; Santhosh, A.J. Casting of particle reinforced metal matrix composite by liquid state fabrication method: A review. Results Eng. 2024, 24, 103152. [Google Scholar] [CrossRef]
- Grilo, J.; Carneiro, V.H.; Teixeira, J.C.; Puga, H. Manufacturing Methodology on Casting-Based Aluminium Matrix Composites: Systematic Review. Metals 2021, 11, 436. [Google Scholar] [CrossRef]
- Yadav, P.; Ranjan, A.; Kumar, H.; Mishra, A.; Yoon, J. A Contemporary Review of Aluminium MMC Developed through Stir-Casting Route. Materials 2021, 14, 6386. [Google Scholar] [CrossRef]
- Malaki, M.; Fadaei Tehrani, A.; Niroumand, B.; Gupta, M. Wettability in Metal Matrix Composites. Metals 2021, 11, 1034. [Google Scholar] [CrossRef]
- Negi, A.S.; Shanmugasundaram, T. Hybrid particles dispersion strengthened aluminum metal matrix composite processed by stir casting. Mater. Today Proc. 2021, 39, 1210–1214. [Google Scholar] [CrossRef]
- Yashpal; Sumankant; Jawalkar, C.S.; Verma, A.S.; Suri, N.M. Fabrication of Aluminium Metal Matrix Composites with Particulate Reinforcement: A Review. Mater. Today Proc. 2017, 4, 2927–2936. [Google Scholar] [CrossRef]
- Venkatesh, V.S.S.; Rao, G.P.; Patnaik, L.; Gupta, N.; Kumar, S.; Saxena, K.K.; Sunil, B.D.Y.; Eldin, S.M.; Kafaji, F.H.K.A. Processing and evaluation of nano SiC reinforced aluminium composite synthesized through ultrasonically assisted stir casting process. J. Mater. Res. Technol. 2023, 24, 7394–7408. [Google Scholar] [CrossRef]
- Gudipudi, S.; Nagamuthu, S.; Subbian, K.S.; Chilakalapalli, S.P.R. Enhanced mechanical properties of AA6061-B4C composites developed by a novel ultra-sonic assisted stir casting. Eng. Sci. Technol. Int. J. 2020, 23, 1233–1243. [Google Scholar] [CrossRef]
- Pethuraj, M.; Uthayakumar, M.; Rajesh, S.; Abdul Majid, M.S.; Rajakarunakaran, S.; Niemczewska-Wójcik, M. Dry sliding wear studies on sillimanite and B4C reinforced aluminum hybrid composites fabricated by vacuum-assisted stir casting process. Materials 2023, 16, 259. [Google Scholar] [CrossRef]
- Tharanikumar, L.; Mohan, B.; Anbuchezhiyan, G. Enhancing the microstructure and mechanical properties of Si3N4–BN strengthened Al–Zn–Mg alloy hybrid nano composites using vacuum assisted stir casting method. J. Mater. Res. Technol. 2022, 20, 3646–3655. [Google Scholar] [CrossRef]
- Luo, Y.; Yi, J.; Chen, M.; Zhou, L.; Zhang, Z.; Huang, Z.; Sun, X.; Zhang, Y.; Wen, L.; Wu, Z. Effect of hot rolling on microstructures and mechanical properties of SiCp/A356 aluminum matrix composites. J. Mater. Res. Technol. 2024, 33, 1776–1784. [Google Scholar] [CrossRef]
- Manokaran, V.; Michael, A.X.; Pazhani, A.; Batako, A. Residual Stress Evolution of Graphene-Reinforced AA2195 (Aluminum–Lithium) Composite for Aerospace Structural Hydrogen Fuel Tank Application. J. Compos. Sci. 2025, 9, 369. [Google Scholar] [CrossRef]
- Purohit, R.; Qureshi, M.M.U.; Kumar, B. Effect of Forging on Aluminum Matrix Nano Composites: A Review. Mater. Today Proc. 2017, 4, 5357–5360. [Google Scholar] [CrossRef]
- Segal, V.; Reznikov, S.V.; Murching, N.; Hammond, V.H.; Kecskes, L.J. Semi-Continuous Equal-Channel Angular Extrusion and Rolling of AA5083 and AZ31 Alloys. Metals 2019, 9, 1035. [Google Scholar] [CrossRef]
- Abishkenov, M.; Ashkeyev, Z.; Mashekov, S.; Akhmetova, G.; Volokitina, I. Investigation of the stress-strain state of balls under deformation in a closed die. Metalurgija 2020, 59, 559–562. [Google Scholar]
- Wang, T.; Zuo, X.; Zhou, Y.; Tian, J.; Ran, S. High strength and high ductility nano-Ni-Al2O3/A356 composites fabricated with nickel-plating and equal channel angle semi-solid extrusion (ECASE). J. Mater. Res. Technol. 2021, 13, 1615–1627. [Google Scholar] [CrossRef]
- Abishkenov, M.; Ashkeyev, Z.; Nogaev, K. Investigation of the shape rolling process implementing intense shear strains in special diamond passes. Materialia 2022, 26, 101573. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kulagin, R.; Klinger, L.; Rabkin, E.; Straumal, P.B.; Kogtenkova, O.A.; Baretzky, B. Structure Refinement and Fragmentation of Precipitates under Severe Plastic Deformation: A Review. Materials 2022, 15, 601. [Google Scholar] [CrossRef]
- Abishkenov, M.; Ashkeyev, Z.; Nogaev, K.; Bestembek, Y.; Azimbayev, K.; Tavshanov, I. On the possibility of implementing a simple shear in the cross-section of metal materials during caliber rolling. Eng. Solid Mech. 2023, 11, 253–262. [Google Scholar] [CrossRef]
- Mashekov, S.; Nurtazaev, E.; Mashekova, A.; Abishkenov, M. Extruding aluminum bars on a new structure radial shear mill. Metalurgija 2021, 60, 427–430. [Google Scholar]
- Arbuz, A.; Kawalek, A.; Ozhmegov, K.; Dyja, H.; Panin, E.; Lepsibayev, A.; Sultanbekov, S.; Shamenova, R. Using of Radial-Shear Rolling to Improve the Structure and Radiation Resistance of Zirconium-Based Alloys. Materials 2020, 13, 4306. [Google Scholar] [CrossRef]
- Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Amanzholov, N.; Kalmyrzayev, D.; Ashkeyev, Z.; Nogaev, K.; Kydyrbayeva, S.; Abdirashit, A. Improving Mechanical Properties of Low-Quality Pure Aluminum by Minor Reinforcement with Fine B4C Particles and T6 Heat Treatment. Appl. Sci. 2024, 14, 10773. [Google Scholar] [CrossRef]
- Channar, H.R.; Ullah, B.; Naseem, M.S.; Akhter, J.; Mehmood, A.; Aamir, M. Mechanical Properties and Microstructural Investigation of AA2024-T6 Reinforced with Al2O3 and SiC Metal Matrix Composites. Eng 2024, 5, 3023–3032. [Google Scholar] [CrossRef]
- Singhal, V.; Shelly, D.; Babbar, A.; Lee, S.-Y.; Park, S.-J. Review of Wear and Mechanical Characteristics of Al-Si Alloy Matrix Composites Reinforced with Natural Minerals. Lubricants 2024, 12, 350. [Google Scholar] [CrossRef]
- Kareem, A.; Qudeiri, J.A.; Abdudeen, A.; Ahammed, T.; Ziout, A. A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting. Materials 2021, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Nogaev, K.; Kalmyrzayev, D.; Abdirashit, A.; Aikenbayeva, N. Effect of Minor Reinforcement with Ultrafine Industrial Microsilica Particles and T6 Heat Treatment on Mechanical Properties of Aluminum Matrix Composites. Appl. Sci. 2025, 15, 1329. [Google Scholar] [CrossRef]
- Razzaq, A.M.; Majid, D.L.; Basheer, U.M.; Aljibori, H.S.S. Research Summary on the Processing, Mechanical and Tribological Properties of Aluminium Matrix Composites as Effected by Fly Ash Reinforcement. Crystals 2021, 11, 1212. [Google Scholar] [CrossRef]
- Farooq, S.A.; Mukhtar, S.H.; Raina, A.; Ul Haq, M.I.; Siddiqui, M.I.H.; Naveed, N.; Dobrota, D. Effect of TiB2 on the Mechanical and Tribological Properties of Marine Grade Aluminum Alloy 5052: An Experimental Investigation. J. Mater. Res. Technol. 2024, 29, 3749–3758. [Google Scholar] [CrossRef]
- Rane, K.; Dhokey, N. On the Formation and Distribution of In Situ Synthesized TiB2 Reinforcements in Cast Aluminium Matrix Composites. J. Compos. Sci. 2018, 2, 52. [Google Scholar] [CrossRef]
- Bhowmik, A.; Sen, B.; Beemkumar, N.; Singh Chohan, J.; Bains, P.S.; Singh, G.; Kumar, A.V.; Santhosh, A.J. Development and wear resistivity performance of SiC and TiB2; particles reinforced novel aluminium matrix composites. Results Eng. 2024, 24, 102981. [Google Scholar] [CrossRef]
- Alfattani, R.; Yunus, M. Explorations of mechanical and corrosion resistance properties of AA6063/TiB2/Cr2O3 hybrid composites produced by stir casting. J. Sci. Adv. Mater. Devices 2024, 9, 100790. [Google Scholar] [CrossRef]
- ELDeeb, I.S.; Hawam, A.A.; Nabhan, A.; Egiza, M. Efficient formability in Radial-Shear Rolling of A2024 aluminum alloy with screw rollers. Mater. Today Commun. 2024, 41, 110241. [Google Scholar] [CrossRef]
- ASTM E8; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM E384-22; Standard Test Method for Microindentation Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Prasad, D.S.; Shoba, C.; Ramanaiah, N. Investigations on mechanical properties of aluminum hybrid composites. J. Mater. Res. Technol. 2014, 3, 79–85. [Google Scholar] [CrossRef]
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Doddapaneni, S.; Kumar, S.; Sharma, S.; Shankar, G.; Shettar, M.; Kumar, N.; Aroor, G.; Ahmad, S.M. Advancements in EBSD Techniques: A Comprehensive Review on Characterization of Composites and Metals, Sample Preparation, and Operational Parameters. J. Compos. Sci. 2025, 9, 132. [Google Scholar] [CrossRef]
- Carneiro, Í.; Fernandes, J.V.; Simões, S. Microstructural Characterization of Al/CNTs Nanocomposites after Cold Rolling. Nanomaterials 2023, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, Í.; Fernandes, J.V.; Simões, S. Deformation Behaviour of Cold-Rolled Ni/CNT Nanocomposites. Appl. Sci. 2022, 12, 9471. [Google Scholar] [CrossRef]
- Prabhu, D.; Rao, P. Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media. Arab. J. Chem. 2017, 10, S2234–S2244. [Google Scholar] [CrossRef]
- Samal, P.; Mandava, R.K.; Vundavilli, P.R. Dry sliding wear behavior of Al 6082 metal matrix composites reinforced with red mud particles. SN Appl. Sci. 2020, 2, 313. [Google Scholar] [CrossRef]
- Vivekananda, A.S.; Prabu, S.B. Wear Behaviour of In Situ Al/TiB2 Composite: Influence of the Microstructural Instability. Tribol. Lett. 2018, 66, 41. [Google Scholar] [CrossRef]
- Dhokey, N.B.; Rane, K.K. Wear Behavior and Its Correlation with Mechanical Properties of TiB2 Reinforced Aluminium-Based Composites. Adv. Tribol. 2011, 9–10, 837469. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Dinaharan, I.; Kalaiselvan, K.; Palanivel, R. Friction stir processing of Al3Ni intermetallic particulate reinforced cast aluminum matrix composites: Microstructure and tensile properties. J. Mater. Res. Technol. 2020, 9, 4356–4367. [Google Scholar] [CrossRef]
- Elkady, O.A.; Alouba, M.; Ali, A.I.; Choi, D.; Nouh, F. Non-destructive void analysis of Al6063–SiC nanocomposites for gamma shielding applications. J. Mater. Sci. Mater. Electron. 2025, 36, 1423. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Pouraliakbar, H.; Khalaj, G.; Khalaj, M.-J.; Heidarzadeh, A. Study on the post-rolling direction of severely plastic deformed Aluminum-Manganese-Silicon alloy. Arch. Civ. Mech. Eng. 2016, 16, 876–887. [Google Scholar] [CrossRef]
- Mamaghani, K.R.; Kazeminezhad, M. The Effect of Direct and Cross-Rolling on Mechanical Properties and Microstructure of Severely Deformed Aluminum. J. Mater. Eng. Perform. 2014, 23, 115–124. [Google Scholar] [CrossRef]
- Poria, S.; Sahoo, P.; Sutradhar, G. Tribological Characterization of Stir-cast Aluminium-TiB2 Metal Matrix Composites. Silicon 2016, 8, 591–599. [Google Scholar] [CrossRef]
- Ayar, V.S.; Sutaria, M.P. Comparative Evaluation of Ex Situ and In Situ Method of Fabricating Aluminum/TiB2 Composites. Inter. Metalcast. 2021, 15, 1047–1056. [Google Scholar] [CrossRef]
- Vivekananda, A.S.; Balasivanandha Prabu, S.; Paskaramoorthy, R. Combined effect of process parameters during aluminothermic reaction process on the microstructure and mechanical properties of in situ Al/TiB2 composite. J. Alloys Compd. 2018, 735, 619–634. [Google Scholar] [CrossRef]
- Auradi, V.; Kori, S.A. Influence of reaction temperature for the manufacturing of Al–3Ti and Al–3B master alloys. J. Alloys Compd. 2008, 453, 147–156. [Google Scholar] [CrossRef]
- Cui, Y.; King, D.J.M.; Horsfield, A.P.; Gourlay, C.M. Solidification orientation relationships between Al3Ti and TiB2. Acta Mater. 2020, 186, 149–161. [Google Scholar] [CrossRef]
- Golla, C.B.; Babar Pasha, M.; Rao, R.N.; Ismail, S.; Gupta, M. Influence of TiC Particles on Mechanical and Tribological Characteristics of Advanced Aluminium Matrix Composites Fabricated through Ultrasonic-Assisted Stir Casting. Crystals 2023, 13, 1360. [Google Scholar] [CrossRef]
- Madhukar, P.; Mishra, V.; Selvaraj, N.; Rao, C.S.P.; Gonal Basavaraja, V.K.; Seetharam, R.; Chavali, M.; Mohammad, F.; Soleiman, A.A. Influence of Ultrasonic Vibration towards the Microstructure Refinement and Particulate Distribution of AA7150-B4C Nanocomposites. Coatings 2022, 12, 365. [Google Scholar] [CrossRef]
- Balasubramani, N.; StJohn, D.; Dargusch, M.; Wang, G. Ultrasonic Processing for Structure Refinement: An Overview of Mechanisms and Application of the Interdependence Theory. Materials 2019, 12, 3187. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, Y.; Luo, X.; Zhou, H.; Cao, C.; Bi, G. Silicon regulation of the interface microstructure and shear strength of rheological cast-rolling aluminum/steel composite plates. J. Mater. Res. Technol. 2024, 30, 6812–6828. [Google Scholar] [CrossRef]
- Luo, K.-G.; Wu, Y.-Z.; Xiong, H.-Q.; Zhang, Y.; Kong, C.; Yu, H.-L. Enhanced mechanical properties of aluminum matrix composites reinforced with high-entropy alloy particles via asymmetric cryorolling. Trans. Nonferrous Met. Soc. China 2023, 33, 1988–2000. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zheng, Z.; Fu, M.W. Aluminum matrix composites: Structural design and microstructure evolution in the deformation process. J. Mater. Res. Technol. 2024, 30, 3724–3754. [Google Scholar] [CrossRef]
- Geng, R.; Qiu, F.; Jiang, Q.-C. Reinforcement in Al Matrix Composites: A Review of Strengthening Behavior of Nano-Sized Particles. Adv. Eng. Mater. 2018, 20, 1701089. [Google Scholar] [CrossRef]
- Schwarze, C.; Darvishi Kamachali, R.; Steinbach, I. Phase-field study of zener drag and pinning of cylindrical particles in polycrystalline materials. Acta Mater. 2016, 106, 59–65. [Google Scholar] [CrossRef]
- Wang, X.; Guo, M.; Moliar, O.; Peng, W.; Xie, C.; Chen, J.; Wang, Y. Enhanced grain refinement and texture weakening in Al–Mg–Si alloy through a novel thermomechanical processing. J. Alloys Compd. 2022, 925, 166654. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, Z.; Liu, Z.; Li, Y.; Guo, P.; Zhou, W.; Wu, Y. The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing. Sci. Rep. 2018, 8, 4196. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Liu, W.; Liu, X.; Badreddine, H.; Saba, F.; Li, Z.; Yue, Z. Simulation and Discussion on Strength Mechanism of Trimodal Grain-Structured CNT/Al Composites Using Strain Gradient Theory. J. Compos. Sci. 2024, 8, 490. [Google Scholar] [CrossRef]
- Mantha, S.R.V.; Kumar, G.B.V.; Pramod, R.; Rao, C.S.P. Investigations on Microstructure, Mechanical, and Wear Properties, with Strengthening Mechanisms of Al6061-CuO Composites. J. Manuf. Mater. Process. 2024, 8, 245. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, X.; Zhang, K.; Liu, J.; Xiao, X.; Jiang, C.; Zhang, J.; Lv, C.; Sun, Z. Microstructures and Mechanical Properties of Al Matrix Composites Reinforced with TiO2 and Graphitic Carbon Nitride. Metals 2025, 15, 60. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, R.S.; Purohit, R.; Saxena, K.K.; Xu, J.; Malik, V. Metallographic Study and Sliding Wear Optimization of Nano Si3N4 Reinforced High-Strength Al Metal Matrix Composites. Lubricants 2022, 10, 202. [Google Scholar] [CrossRef]
Mg | Si | Mn | Fe | Cu | Zn | Ti | Others | Al |
---|---|---|---|---|---|---|---|---|
0.35–0.50 | 0.30–0.60 | ≤0.10 | 0.10–0.30 | ≤0.10 | ≤0.15 | ≤0.10 | ≤0.15 | 97.65–99.35 |
Nomenclature | Al6060 (wt%) | TiB2 (wt%) |
---|---|---|
Al6060–C (cast) | 100 | 0 |
Al6060–R (rolled) | 100 | 0 |
Al6060/TiB2–C (cast) | 98 | 2 |
Al6060/TiB2–R (rolled) | 98 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abishkenov, M.; Tavshanov, I.; Lutchenko, N.; Nogayev, K.; Ashkeyev, Z.; Kulidan, S. Microstructure and Mechanical Properties of Al6060/TiB2 Aluminum Matrix Composites Produced via Ultrasonically Assisted Stir Casting and Radial-Shear Rolling. J. Manuf. Mater. Process. 2025, 9, 309. https://doi.org/10.3390/jmmp9090309
Abishkenov M, Tavshanov I, Lutchenko N, Nogayev K, Ashkeyev Z, Kulidan S. Microstructure and Mechanical Properties of Al6060/TiB2 Aluminum Matrix Composites Produced via Ultrasonically Assisted Stir Casting and Radial-Shear Rolling. Journal of Manufacturing and Materials Processing. 2025; 9(9):309. https://doi.org/10.3390/jmmp9090309
Chicago/Turabian StyleAbishkenov, Maxat, Ilgar Tavshanov, Nikita Lutchenko, Kairosh Nogayev, Zhassulan Ashkeyev, and Siman Kulidan. 2025. "Microstructure and Mechanical Properties of Al6060/TiB2 Aluminum Matrix Composites Produced via Ultrasonically Assisted Stir Casting and Radial-Shear Rolling" Journal of Manufacturing and Materials Processing 9, no. 9: 309. https://doi.org/10.3390/jmmp9090309
APA StyleAbishkenov, M., Tavshanov, I., Lutchenko, N., Nogayev, K., Ashkeyev, Z., & Kulidan, S. (2025). Microstructure and Mechanical Properties of Al6060/TiB2 Aluminum Matrix Composites Produced via Ultrasonically Assisted Stir Casting and Radial-Shear Rolling. Journal of Manufacturing and Materials Processing, 9(9), 309. https://doi.org/10.3390/jmmp9090309