Adaptation of Conventional Toolpath-Generation Software for Use in Curved-Layer Fused Deposition Modeling
Abstract
:1. Introduction
2. Methods
2.1. Detection of Non-Planar Surfaces
2.1.1. Physical Manufacturability
2.1.2. Evaluation of Triangles
2.2. Method 1: Adapting Layer Heights
2.2.1. Adapting the Part Surface
2.2.2. Slicing with a Conventional Slicer
2.2.3. Scaling z-Axis and Material Extrusion
2.3. Method 2: Transforming Part
2.3.1. Transformation of the Part
2.3.2. Retransformation of the GCode
2.4. Choosing Between Methods 1 and 2
2.5. Ironing
‘Ironing is the process of passing the topmost layer with the heated nozzle again while extruding (or not extruding) a low amount of material.’
3. Results and Discussion
3.1. Computing Time
3.2. Printability
3.3. Surface Roughness
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CLFDM | Curved-Layer Fused Deposition Modeling |
FDM | Fused Deposition Modeling |
STL | Stereolithography file format |
CAD | Computer-Aided Design |
DOF | Degree Of Freedom |
CLI | Command Line Interface |
PLA | Polylactic acid |
References
- Kumar, S.A.; Prasad, R. Chapter 2—Basic principles of additive manufacturing: Different additive manufacturing technologies. In Additive Manufacturing; Woodhead Publishing Reviews: Mechanical Engineering Series; Woodhead Publishing: Sawston, UK, 2021; pp. 17–35. [Google Scholar]
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Hu, J. Study on STL-Based Slicing Process for 3D Printing. In Proceedings of the 2017 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 7–9 August 2017. [Google Scholar]
- Ahlers, D.; Wasserfall, F.; Hendrich, N.; Zhang, J. 3D Printing of Nonplanar Layers for Smooth Surface Generation. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019. [Google Scholar]
- Kiński, W.; Pietkiewicz, P. Influence of the Print Layer Height in FDM Technology on the Rolling Force Value and the Print Time. Agric. Eng. 2019, 23, 1–9. [Google Scholar] [CrossRef]
- Al-Maharma, A.Y.; Patil, S.P.; Markert, B. Effects of porosity on the mechanical properties of additively manufactured components: A critical review. Mater. Res. Express 2020, 7, 122001. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef] [PubMed]
- Gonabadi, H.; Hosseini, S.F.; Chen, Y.; Bull, S. Structural analysis of small-scale 3D printed composite tidal turbine blades. Ocean Eng. 2024, 306, 118057. [Google Scholar] [CrossRef]
- Wang, W.; Chao, H.; Tong, J.; Yang, Z.; Tong, X.; Li, H.; Liu, X.; Liu, L. Saliency-Preserving Slicing Optimization for Effective 3D Printing. Comput. Graph. Forum 2015, 34, 148–160. [Google Scholar] [CrossRef]
- Delfs, P.; Toews, M.; Schmid, H.J. Surface roughness optimized alignment of parts for additive manufacturing processes. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 10–12 August 2015; Volume 26, pp. 1334–1344. [Google Scholar]
- Chakraborty, D.; Aneesh Reddy, B.; Roy Choudhury, A. Extruder path generation for Curved-Layer Fused Deposition Modeling. Comput.-Aided Des. 2008, 40, 235–243. [Google Scholar] [CrossRef]
- Shan, Y.; Gan, D.; Mao, H. Curved Layer Slicing based on Isothermal Surface. Procedia Manuf. 2021, 53, 484–491. [Google Scholar] [CrossRef]
- Feng, X.; Cui, B.; Liu, Y.; Li, L.; Shi, X.; Zhang, X. Curved-layered material extrusion modeling for thin-walled parts by a 5-axis machine. Rapid Prototyp. J. 2021, 27, 1378–1387. [Google Scholar] [CrossRef]
- Nayyeri, P.; Zareinia, K.; Bougherara, H. Planar and nonplanar slicing algorithms for fused deposition modeling technology: A critical review. Int. J. Adv. Manuf. Technol. 2022, 119, 2785–2810. [Google Scholar] [CrossRef]
- Prusa Research. PrusaSlicer. Available online: https://www.prusa3d.com/en/prusaslicer/ (accessed on 27 November 2024).
- Ultimaker. Cura. Available online: https://ultimaker.com/software/ultimaker-cura/ (accessed on 27 November 2024).
- Wüthrich, M.; Gubser, M.; Elspass, W.J.; Jaeger, C. A Novel Slicing Strategy to Print Overhangs without Support Material. Appl. Sci. 2021, 11, 8760. [Google Scholar] [CrossRef]
- Maissen, S.; Zürcher, S. GitHub Repository. Available online: https://github.com/RotBotSlicer/Nonplanar_Slicing/ (accessed on 27 November 2024).
- Jin, Y.; Du, J.; He, Y.; Fu, G. Modeling and process planning for Curved-Layer Fused Deposition. Int. J. Adv. Manuf. Technol. 2016, 91, 273–285. [Google Scholar] [CrossRef]
- Huang, B.; Singamneni, S. Curved-Layer Adaptive Slicing (CLAS) for fused deposition modelling. Rapid Prototyp. J. 2015, 21, 354–367. [Google Scholar] [CrossRef]
- Singamneni, S.; Roychoudhury, A.; Diegel, O.; Huang, B. Modeling and evaluation of Curved-Layer Fused Deposition. J. Mater. Process. Technol. 2012, 212, 27–35. [Google Scholar] [CrossRef]
- Alfeld, P. A trivariate clough—Tocher scheme for tetrahedral data. Comput. Aided Geom. Des. 1984, 1, 169–181. [Google Scholar] [CrossRef]
- Parker, J.A.; Kenyon, R.V.; Troxel, D.E. Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med Imaging 1983, 2, 31–39. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- SciPy Griddata. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html (accessed on 27 November 2024).
- Pelzer, L.; Hopmann, C. Additive manufacturing of non-planar layers with variable layer height. Addit. Manuf. 2021, 37, 101697. [Google Scholar] [CrossRef]
- Zhao, G.; Ma, G.; Feng, J.; Xiao, W. Nonplanar slicing and path generation methods for robotic additive manufacturing. Int. J. Adv. Manuf. Technol. 2018, 96, 3149–3159. [Google Scholar] [CrossRef]
- Chohan, J.; Singh, R. Pre and post processing techniques to improve surface characteristics of FDM parts: A state of art review and future applications. Rapid Prototyp. J. 2017, 23, 495–513. [Google Scholar] [CrossRef]
- Caputo, M.; Rashwan, O.; Waryoba, D.; McDade, K. Surface texture and thermo-mechanical properties of material extruded and ironed polylactic acid. Addit. Manuf. 2022, 59, 103084. [Google Scholar] [CrossRef]
- Keyence. Keyence VR-6000. Available online: https://www.keyence.com/products/microscope/macroscope/vr-6000/ (accessed on 27 November 2024).
- Wüthrich, M. Trilab Mod. Available online: https://www.printables.com/model/798333-trilab-deltiq2-printhead-modification-to-gain-clea (accessed on 27 November 2024).
- Gonabadi, H.; Hosseini, S.F.; Chen, Y.; Bull, S. Size effects of voids on the mechanical properties of 3D printed parts. Int. J. Adv. Manuf. Technol. 2024, 132, 5439–5456. [Google Scholar] [CrossRef]
Part/ (Scale) | Vol [cm3] | Trans. STL [s] | Slice STL [s] | Retrans. GCode [s] | Total Time [s] 1 | Total Time per Volume [s cm3] |
---|---|---|---|---|---|---|
Disk (0.5) | 1.8 | 0.08 | 0.14 | 0.38 | 0.61 | 0.345 |
Disk (1) | 14.1 | 0.06 | 0.19 | 2.37 | 2.64 | 0.187 |
Disk (2) | 113.1 | 0.09 | 0.41 | 16.78 | 17.31 | 0.153 |
Disk (4) | 904.8 | 0.08 | 1.94 | 135.24 | 137.27 | 0.152 |
Wedge (0.5) | 0.8 | 0.01 | 0.07 | 0.17 | 0.29 | 0.344 |
Wedge (1) | 6.7 | 0.01 | 0.08 | 0.97 | 1.1 | 0.163 |
Wedge (2) | 54.0 | 0.02 | 0.15 | 8.0 | 8.17 | 0.151 |
Wedge (4) | 432.0 | 0.02 | 0.71 | 64.87 | 65.61 | 0.152 |
Sample Nr. | Slicing and Printing | Layer Height [mm] | Raster Angle [°] | Printing Time [min] |
---|---|---|---|---|
1 | Cube, planar | 0.2 | 45 | 13 |
2 | Cube, planar + ironing | 0.2 | 45 | 23 |
3 | Wedge, planar | 0.05 | 0 | 62 (392) |
4 | Wedge, planar | 0.1 | 0 | 32 (251) |
5 | Wedge, planar | 0.2 | 0 | 19 |
6 | Wedge, planar | 0.3 | 0 | 17 |
7 | Wedge, non-planar | 0.2 | 0 | 19 |
8 | Wedge, non-planar + ironing | 0.2 | 0 | 29 |
9 | Wedge, non-planar | 0.2 | 45 | 19 |
10 | Wedge, non-planar + ironing | 0.2 | 45 | 29 |
Sample Nr. | Measurement Angle [°] | Ra [μm] | Rz [μm] |
---|---|---|---|
(a) Measurements for planar reference samples (cube) | |||
1 | −45° | 13.673 | 91.082 |
0° | 12.673 | 86.512 | |
45° | 10.795 | 67.466 | |
90° | 14.051 | 84.248 | |
2 | −45° | 7.362 | 64.860 |
0° | 5.959 | 47.001 | |
45° | 6.397 | 49.242 | |
90° | 5.983 | 58.725 | |
(b) Measurements for planar samples (wedge) | |||
3 | −45° | 9.903 | 74.235 |
0° | 9.737 | 62.009 | |
45° | 9.251 | 70.622 | |
90° | 4.115 | 35.207 | |
4 | −45° | 19.364 | 130.754 |
0° | 17.484 | 99.633 | |
45° | 17.329 | 108.070 | |
90° | 4.243 | 32.850 | |
5 | −45° | 37.685 | 190.306 |
0° | 34.949 | 178.347 | |
45° | 37.462 | 200.418 | |
90° | 10.728 | 62.341 | |
6 | −45° | 59.269 | 320.549 |
0° | 59.068 | 277.89 | |
45° | 60.197 | 298.219 | |
90° | 13.871 | 83.965 | |
(c) Measurements for non-planar samples (wedge) | |||
7 | −45° | 13.728 | 86.994 |
0° | 11.737 | 75.676 | |
45° | 12.504 | 77.960 | |
90° | 9.443 | 47.863 | |
8 | −45° | 6.557 | 40.907 |
0° | 6.617 | 56.073 | |
45° | 6.946 | 74.983 | |
90° | 4.018 | 27.513 | |
9 | −45° | 22.189 | 101.425 |
0° | 20.567 | 98.123 | |
45° | 8.129 | 58.368 | |
90° | 20.810 | 106.219 | |
10 | −45° | 10.117 | 51.010 |
0° | 6.194 | 35.794 | |
45° | 9.244 | 48.962 | |
90° | 5.693 | 35.741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maissen, S.; Zürcher, S.; Wüthrich, M. Adaptation of Conventional Toolpath-Generation Software for Use in Curved-Layer Fused Deposition Modeling. J. Manuf. Mater. Process. 2024, 8, 270. https://doi.org/10.3390/jmmp8060270
Maissen S, Zürcher S, Wüthrich M. Adaptation of Conventional Toolpath-Generation Software for Use in Curved-Layer Fused Deposition Modeling. Journal of Manufacturing and Materials Processing. 2024; 8(6):270. https://doi.org/10.3390/jmmp8060270
Chicago/Turabian StyleMaissen, Samuel, Severin Zürcher, and Michael Wüthrich. 2024. "Adaptation of Conventional Toolpath-Generation Software for Use in Curved-Layer Fused Deposition Modeling" Journal of Manufacturing and Materials Processing 8, no. 6: 270. https://doi.org/10.3390/jmmp8060270
APA StyleMaissen, S., Zürcher, S., & Wüthrich, M. (2024). Adaptation of Conventional Toolpath-Generation Software for Use in Curved-Layer Fused Deposition Modeling. Journal of Manufacturing and Materials Processing, 8(6), 270. https://doi.org/10.3390/jmmp8060270