Process Developments in Electron-Beam Powder Bed Fusion Enabled by Near-Infrared Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powders
2.2. Sample Manufacturing
2.2.1. Build without a Build Platform with the Aid of NIR Heating
2.2.2. Repairing by NIR-Assisted PBF-EB
2.3. Sample Characterization
3. Results and Discussion
3.1. Build without a Build Platform with the Aid of NIR Heating
3.2. Repairing by NIR-Assisted PBF-EB
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carolo, L.C.B.; Cooper, O.R.E. A review on the influence of process variables on the surface roughness of Ti-6Al-4V by electron beam powder bed fusion. Addit. Manuf. 2022, 59, 103103. [Google Scholar] [CrossRef]
- Fu, Z.; Körner, C. Actual state-of-the-art of electron beam powder bed fusion. Eur. J. Mater. 2022, 2, 54–116. [Google Scholar] [CrossRef]
- Botero, C.; Ramsperger, M.; Selte, A.; Åsvik, K.; Koptyug, A.; Skoglund, P.; Roos, S.; Rännar, L.-E.; Bäckström, M. Additive Manufacturing of a Cold-Work Tool Steel using Electron Beam Melting. Steel Res. Int. 2020, 91, 1900448. [Google Scholar] [CrossRef]
- Sjöström, W.; Botero Vega, C.A. Feasibility of Electron Beam Melting Metal Coated Ceramic Powders. 2023. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-46817 (accessed on 28 April 2023).
- Sjöström, W.; Botero, C.; Jimenez-Pique, E. Coating as a Methodology to Increase Processability of Al2O3 in Electron Beam Powder Bed Fusion. 2023. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-48006 (accessed on 28 April 2023).
- Kotzem, D.; Teschke, M.; Juechter, V.; Körner, C.; Walther, F. Microstructure analysis and mechanical properties of electron beam powder bed fusion (PBF-EB)-manufactured γ-titanium aluminide (TiAl) at elevated temperatures. Mater. Test. 2022, 64, 636–646. [Google Scholar] [CrossRef]
- Kirchner, A.; Klöden, B.; Franke-Jurisch, M.; Rauh-Hain, L.I.; Weißgärber, T. Manufacturing of tool steels by PBF-EB. Metals 2021, 11, 1640. [Google Scholar] [CrossRef]
- Mukherjee, P.; Gabourel, A.; Firdosy, S.A.; Hofmann, D.C.; Moridi, A. Additive manufacturing of refractory metals and carbides for extreme environments: An overview. Sci. Technol. Weld. Join. 2024, 29, 99–115. [Google Scholar] [CrossRef]
- Grasso, M.; Colosimo, B.M. A review of the current state-of-the-art on in situ monitoring in electron beam powder bed fusion. Prog. Addit. Manuf. 2024, 9, 1449–1466. [Google Scholar] [CrossRef]
- Sjöström, W.; Botero, C.; Jimenez-Piqueo, E. Melting ceramic Al2O3 powder by electron beam powder bed fusion. Prog. Addit. Manuf. 2024, 9, 1523–1535. [Google Scholar] [CrossRef]
- Wennersten, K.; Xu, J.; Armakavicius, N.; Wiberg, A.; Najafabadi, H.N.; Moverare, J. Feasibility of Melting NbC Using Electron Beam Powder Bed Fusion. Adv. Eng. Mater. 2024, 26, 2301388. [Google Scholar] [CrossRef]
- Rizza, G.; Galati, M.; Iuliano, L. Evaluation of the effective thermal conductivity of the unmelted powder particles during the electron beam powder bed fusion (EB-PBF) process. Procedia CIRP 2023, 118, 765–770. [Google Scholar] [CrossRef]
- Gui, Y.; Aoyagi, K.; Chiba, A. Development of macro-defect-free PBF-EB-processed Ti–6Al–4V alloys with superior plasticity using PREP-synthesized powder and machine learning-assisted process optimization. Mater. Sci. Eng. A 2023, 864, 144595. [Google Scholar] [CrossRef]
- Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Liu, Y.; Li, S.; Hao, Y. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Antonysamy, A.A.; Parimi, L.L.; Mani, M.K.; Schade, C.T.; Lunt, A.J. Powder characterisation and the impact on part performance in electron beam melted Ti6Al4V. Mater. Des. 2024, 239, 112788. [Google Scholar] [CrossRef]
- Rizza, G.; Galati, M.; Antonioni, P.; Iuliano, L. Effect of the Sintering Conditions on the Neck Growth during the Powder Bed Fusion with Electron Beam (PBF-EB) Process. J. Manuf. Mater. Process. 2023, 7, 55. [Google Scholar] [CrossRef]
- Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef]
- Milberg, J.; Sigl, M. Electron beam sintering of metal powder. Prod. Eng. 2008, 2, 117–122. [Google Scholar] [CrossRef]
- Chiba, A.; Daino, Y.; Aoyagi, K.; Yamanaka, K. Smoke Suppression in Electron Beam Melting of Inconel 718 Alloy Powder Based on Insulator–Metal Transition of Surface Oxide Film by Mechanical Stimulation. Materials 2021, 14, 4662. [Google Scholar] [CrossRef]
- Cordero, Z.C.; Meyer, H.M.; Nandwana, P.; Dehoff, R.R. Powder bed charging during electron-beam additive manufacturing. Acta Mater. 2017, 124, 437–445. [Google Scholar] [CrossRef]
- Reith, M.; Franke, M.; Körner, C. Impact of the acceleration voltage on the processing of γ-TiAl via electron beam powder bed fusion. Prog. Addit. Manuf. 2023, 9, 1425–1436. [Google Scholar] [CrossRef]
- Lee, H.-J.; Ahn, D.-G. Investigation of elimination of powder spreading in manufacture of thin and wide preheating beads from Co–Cr alloy powders using a P-ebeam. J. Mater. Res. Technol. 2021, 14, 1873–1883. [Google Scholar] [CrossRef]
- Murr, L.E.; Martinez, E.; Amato, K.N.; Gaytan, S.M.; Hernandez, J.; Ramirez, D.A.; Shindo, P.W.; Medina, F.; Wicker, R.B. Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science. J. Mater. Res. Technol. 2012, 1, 42–54. [Google Scholar] [CrossRef]
- Mandil, G.; Le, V.T.; Paris, H.; Suard, M. Building new entities from existing titanium part by electron beam melting: Microstructures and mechanical properties. Int. J. Adv. Manuf. Technol. 2016, 85, 1835–1846. [Google Scholar] [CrossRef]
- Karimi, P.; Sadeghi, E.; Ålgårdh, J.; Harlin, P.; Andersson, J. Effect of build location on microstructural characteristics and corrosion behavior of EB-PBF built Alloy 718. Int. J. Adv. Manuf. Technol. 2020, 106, 3597–3607. [Google Scholar] [CrossRef]
- Rahimi, F.; Pourabdollah, P.; Mehr, F.F.; Cockcroft, S.; Maijer, D. A macroscale heat transfer analysis of the build chamber in a commercial electron beam powder bed fusion (EB-PBF) additive manufacturing system during component fabrication. Addit. Manuf. 2023, 78, 103831. [Google Scholar] [CrossRef]
- Kotzem, D.; Höffgen, A.; Raveendran, R.; Stern, F.; Möhring, K.; Walther, F. Position-dependent mechanical characterization of the PBF-EB-manufactured Ti6Al4V alloy. Prog. Addit. Manuf. 2022, 7, 249–260. [Google Scholar] [CrossRef]
- Bruno, J.; Rochman, A.; Cassar, G. Effect of Build Orientation of Electron Beam Melting on Microstructure and Mechanical Properties of Ti-6Al-4V. J. Mater. Eng. Perform. 2017, 26, 692–703. [Google Scholar] [CrossRef]
- Derimow, N.; Romero, A.; Rubio, A.; Terrazas, C.; Medina, F.; Wicker, R.; Hrabe, N. Sintered powder oxidation variation as a function of build height for titanium alloy produced by electron beam powder-bed fusion. Addit. Manuf. Lett. 2021, 1, 100023. [Google Scholar] [CrossRef]
- Ye, J.; Chen, T.; Körner, C. Correlating outgassing and smoke phenomenon in electron beam powder bed fusion of Ti6Al4V using a residual gas analyzer. Prog. Addit. Manuf. 2024. [Google Scholar] [CrossRef]
- Javidrad, H.R.; Javidrad, F. Review of state-of-the-art research on the design and manufacturing of support structures for powder-bed fusion additive manufacturing. Prog. Addit. Manuf. 2023, 8, 1517–1542. [Google Scholar] [CrossRef]
- Gil, E.; Mancisidor, A.M.; Iturrioz, A.; Garciandia, F.; Sebastian, M.S. Cracking susceptibility of maraging parts manufactured by laser powder bed fusion additive manufacturing: Study on the powder characteristics and baseplate preheating influence. Powder Met. 2023, 66, 416–426. [Google Scholar] [CrossRef]
- Borrelli, R.; Bellini, C.; Berto, F.; Di Cocco, V.; Foti, P.; Iacoviello, F.; Mocanu, L.P.; Pirozzi, C.; Razavi, N.; Franchitti, S. The impact of Ti6Al4V powder reuse on the quality of electron beam powder bed fusion parts. Prog. Addit. Manuf. 2024, 9, 1475–1490. [Google Scholar] [CrossRef]
- Kumaran, M. Experimental Investigations on Directed Energy Deposition Based Repair of Stainless Steel 316L Alloy Substrate Manufactured through Hot Rolled Steel and Powder Bed Fusion Process. J. Mater. Eng. Perform. 2023, 32, 5837–5848. [Google Scholar] [CrossRef]
- Wurst, J.; Ganter, N.V.; Ehlers, T.; Schneider, J.A.; Lachmayer, R. Assessment of the ecological impact of metal additive repair and refurbishment using powder bed fusion by laser beam based on a multiple case study. J. Clean. Prod. 2023, 423, 138630. [Google Scholar] [CrossRef]
- Megahed, S.; Koch, R.; Schleifenbaum, J.H. Laser Powder Bed Fusion Tool Repair: Statistical Analysis of 1.2343/H11 Tool Steel Process Parameters and Microstructural Analysis of the Repair Interface. J. Manuf. Mater. Process. 2022, 6, 139. [Google Scholar] [CrossRef]
- Leino, M.; Pekkarinen, J.; Soukka, R. The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing—Enabling circular economy. Phys. Procedia 2016, 83, 752–760. [Google Scholar] [CrossRef]
- Sato, N.; Matsumoto, M.; Ogiso, H.; Sato, H. Challenges of Remanufacturing Using Powder Bed Fusion Based Additive Manufacturing. Int. J. Autom. Technol. 2022, 16, 773–782. [Google Scholar] [CrossRef]
- Hinojos, A.; Mireles, J.; Reichardt, A.; Frigola, P.; Hosemann, P.; Murr, L.E.; Wicker, R.B. Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Mater. Des. 2016, 94, 17–27. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Zhou, L.; Lou, Y.; Liu, S.; Zheng, D.; Yi, M. Progress in additive manufacturing, additive repair and fatigue evaluation of aviation titanium alloy blades. Mater. Res. Lett. 2023, 11, 973–1012. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Yi, M. Powder bed fusion repair of titanium with surface damage: Molecular dynamics study on microstructure and mechanical properties. Addit. Manuf. 2024, 84, 104096. [Google Scholar] [CrossRef]
- Tao, S.; Gao, R.; Peng, H.; Guo, H.; Chen, B. High-reliability repair of single-crystal Ni-base superalloy by selective electron beam melting. Mater. Des. 2022, 224, 111421. [Google Scholar] [CrossRef]
- Terrazas, C.A.; Gaytan, S.M.; Rodriguez, E.; Espalin, D.; Murr, L.E.; Medina, F.; Wicker, R.B. Multi-material metallic structure fabrication using electron beam melting. Int. J. Adv. Manuf. Technol. 2014, 71, 33–45. [Google Scholar] [CrossRef]
- Tosi, R.; Muzangaza, E.; Tan, X.P.; Wimpenny, D.; Attallah, M.M. Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti–6Al–4V: Processing, Microstructure, and Mechanical Properties. Met. Mater. Trans. A 2022, 53, 927–941. [Google Scholar] [CrossRef]
- Rock, C.; Tarafder, P.; Ives, L.; Horn, T. Characterization of copper & stainless steel interface produced by electron beam powder bed fusion. Mater. Des. 2021, 212, 110278. [Google Scholar] [CrossRef]
- Sjöström, W.; Koptyug, A.; Rännar, L.-E.; Botero, C. Near-infrared radiation: A promising heating method for powder bed fusion Near-infrared radiation: A promising heating method for powder bed fusion. Mater. Manuf. Process. 2024, 39, 320–328. [Google Scholar] [CrossRef]
- Taghian, M.; Mani, H.; Mosallanejad, M.; Abdi, A.; Saboori, A.; Iuliano, L. Critical Condition for Initiation of Dynamic Recrystallisation in Electron Beam Powder Bed Fused Ti-6Al-4V Alloy. J. Alloys Compd. 2024, 1005, 176165. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Liu, H.; Liu, L.; Pan, D.; Wang, S.; Hui, D.; Wang, W.; Gao, L.; Gao, J.; et al. Microstructure and mechanical properties of large Ti6Al4V components by electron beam powder bed fusion. Mater. Sci. Eng. A 2024, 913, 147023. [Google Scholar] [CrossRef]
- Sandell, V.; Åkerfeldt, P.; Hansson, T.; Antti, M.-L. Fatigue fracture characterization of chemically post-processed electron beam powder bed fusion Ti–6Al–4V. Int. J. Fatigue 2023, 172, 107673. [Google Scholar] [CrossRef]
- Braun, D.; Ganor, Y.I.; Samuha, S.; Guttmann, G.M.; Chonin, M.; Frage, N.; Hayun, S.; Tiferet, E. A Design of Experiment Approach for Development of Electron Beam Powder Bed Fusion Process Parameters and Improvement of Ti-6Al-4V As-Built Properties. J. Manuf. Mater. Process. 2022, 6, 90. [Google Scholar] [CrossRef]
- Shao, M.; Vijayan, S.; Nandwana, P.; Jinschek, J.R. The effect of beam scan strategies on microstructural variations in Ti-6Al-4V fabricated by electron beam powder bed fusion. Mater. Des. 2020, 196, 109165. [Google Scholar] [CrossRef]
- Davids, W.J.; Chen, H.; Nomoto, K.; Wang, H.; Babu, S.; Primig, S.; Liao, X.; Breen, A.; Ringer, S.P. Phase transformation pathways in Ti-6Al-4V manufactured via electron beam powder bed fusion. Acta Mater. 2021, 215, 117131. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Asadi, E.; Shakil, S.I.; Amirkhiz, B.S.; Mohammadi, M.; Haghshenas, M. Indentation-derived mechanical properties of Ti-6Al-4V: Laser-powder bed fusion versus electron beam melting. Mater. Lett. 2021, 301, 130273. [Google Scholar] [CrossRef]
- Rännar, L.-E.; Koptyug, A.; Olsén, J.; Saeidi, K.; Shen, Z. Hierarchical structures of stainless steel 316L manufactured by Electron Beam Melting. Addit. Manuf. 2017, 17, 106–112. [Google Scholar] [CrossRef]
- Wang, C.; Tan, X.; Liu, E.; Tor, S.B. Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Mater. Des. 2018, 147, 157–166. [Google Scholar] [CrossRef]
- Zhong, Y.; Rännar, L.-E.; Liu, L.; Koptyug, A.; Wikman, S.; Olsen, J.; Cui, D.; Shen, Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J. Nucl. Mater. 2017, 486, 234–245. [Google Scholar] [CrossRef]
- ISO 6507-1:2023; Metallic Materials—Vickers Hardness Test. Part 1: Test Method. The International Organization for Standardization: Geneva, Switzerland, 2023.
- Ladani, L. Local and Global Mechanical Behavior and Microstructure of Ti6Al4V Parts Built Using Electron Beam Melting Technology. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 3835–3841. [Google Scholar] [CrossRef]
- Chauvet, E.; Tassin, C.; Blandin, J.-J.; Dendievel, R.; Martin, G. Producing Ni-base superalloys single crystal by selective electron beam melting. Scr. Mater. 2018, 152, 15–19. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Yu, Y.; Wang, D.; Lin, F. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers Review on Additive Manufacturing of Single-Crystal Nickel-based Superalloys. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Ladani, L.; Sadeghilaridjani, M. Review of powder bed fusion additive manufacturing for metals. Metals 2021, 11, 1391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sjöström, W.; Rännar, L.-E.; Botero, C.; Membrado, L.O. Process Developments in Electron-Beam Powder Bed Fusion Enabled by Near-Infrared Radiation. J. Manuf. Mater. Process. 2024, 8, 211. https://doi.org/10.3390/jmmp8050211
Sjöström W, Rännar L-E, Botero C, Membrado LO. Process Developments in Electron-Beam Powder Bed Fusion Enabled by Near-Infrared Radiation. Journal of Manufacturing and Materials Processing. 2024; 8(5):211. https://doi.org/10.3390/jmmp8050211
Chicago/Turabian StyleSjöström, William, Lars-Erik Rännar, Carlos Botero, and Laia Ortiz Membrado. 2024. "Process Developments in Electron-Beam Powder Bed Fusion Enabled by Near-Infrared Radiation" Journal of Manufacturing and Materials Processing 8, no. 5: 211. https://doi.org/10.3390/jmmp8050211
APA StyleSjöström, W., Rännar, L. -E., Botero, C., & Membrado, L. O. (2024). Process Developments in Electron-Beam Powder Bed Fusion Enabled by Near-Infrared Radiation. Journal of Manufacturing and Materials Processing, 8(5), 211. https://doi.org/10.3390/jmmp8050211