Experimental Study on Dry Milling of Stir-Casted and Heat-Treated Mg-Gd-Y-Er Alloy Using TOPSIS
Abstract
:1. Introduction
2. Experimental Methods
2.1. Material Preparation Methods
2.2. Process Parameters and Design of Experiments (DOE)
2.3. Measurements of Responses and Optimization
3. Results and Discussions
4. Conclusions
- ❖
- According to the TOPSIS, the optimal conditions for the as-cast and the age-hardened samples (225 °C for 8 h) were achieved in experimental run 7. The best run for the T4-treated and the age-hardened samples (200 °C for 16 h) was determined to be run 9. Furthermore, after subjecting the as-cast and the age-hardened samples to 225 °C for 8 h, experiment 9 was shown to be the second best.
- ❖
- The TOPSIS converts the many objectives listed into a single response system and is evaluated using the closeness coefficient. The highest closeness coefficient value is achieved using a spindle speed ranging from 1000 to 1500 rpm, a feed rate of 150 mm/min, and a depth of cut between 0.5 mm and 1 mm.
- ❖
- The ANOVA result indicates that the depth of cut and the spindle speed are the most influential factors in both the as-cast and the T4-treated samples. The feed rate was the most crucial factor while analyzing the age-hardened samples. Additionally, the second most influential factor was the feed rate in the as-cast and the T4-treated samples.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baral, S.K.; Thawre, M.M.; Sunil, B.R.; Dumpala, R. A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods. J. Magnes. Alloys 2023, 11, 776–800. [Google Scholar] [CrossRef]
- Rakshith, M.; Seenuvasaperumal, P. Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy. J. Magnes. Alloys 2021, 9, 1692–1714. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Zhang, D.; Ren, J.; Yao, C.; Huang, X. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool. Adv. Mech. Eng. 2016, 8, 168781401662839. [Google Scholar] [CrossRef]
- Gobivel, K.; Sekar, K.V. Influence of cutting parameters on end milling of magnesium alloy AZ31B. Mater. Today Proc. 2022, 62, 933–937. [Google Scholar] [CrossRef]
- Mostafapour, A.; Mohammadi, M.; Ebrahimpour, A. The Influence of Milling Parameters on Surface Properties in Milled AZ91C Magnesium Alloy. IJMSE 2021, 18, 1–13. [Google Scholar] [CrossRef]
- Ahuja, N.; Batra, U.; Kumar, K. Experimental Investigation and Optimization of Wire Electrical Discharge Machining for Surface Characteristics and Corrosion Rate of Biodegradable Mg Alloy. J. Mater. Eng. Perform. 2020, 29, 4117–4129. [Google Scholar] [CrossRef]
- Chirita, B.; Grigoras, C.; Tampu, C.; Herghelegiu, E. Analysis of cutting forces and surface quality during face milling of a magnesium alloy. IOP Conf. Ser. Mater. Sci. Eng. 2019, 591, 012006. [Google Scholar] [CrossRef]
- Wojtowicz, N.; Danis, I.; Monies, F.; Lamesle, P.; Chieragati, R. The Influence of Cutting Conditions on Surface Integrity of a Wrought Magnesium Alloy. Procedia Eng. 2013, 63, 20–28. [Google Scholar] [CrossRef]
- Suresh, A.; Nancharaiah, T.; Dumpala, R.; Sunil, B.R. Role of heat treatment on machining characteristics and surface roughness of AZ91 Mg alloy. Mater. Today Proc. 2022, 50, 2488–2492. [Google Scholar] [CrossRef]
- Xu, J.; Shen, J.; Li, L.; Guo, G.; Zhu, X.; Meng, Y.; Chen, M. Milling machinability analysis of GW63K rare-earth magnesium alloys based on the concept of clean cutting. J. Mater. Res. Technol. 2023, 26, 9380–9391. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Guo, G.; Gupta, M.K.; Chen, M. Wear behavior of different coated tools in MQL-assisted milling of magnesium-based rare-earth alloys. J. Mater. Res. Technol. 2023, 27, 1665–1682. [Google Scholar] [CrossRef]
- Dinesh, S.; Senthilkumar, V.; Asokan, P.; Arulkirubakaran, D. Effect of cryogenic cooling on machinability and surface quality of bio-degradable ZK60 Mg alloy. Mater. Des. 2015, 87, 1030–1036. [Google Scholar] [CrossRef]
- Jouini, N.; Ruslan, M.S.M.; Ghani, J.A.; Haron, C.H.C. Sustainable High-Speed Milling of Magnesium Alloy AZ91D in Dry and Cryogenic Conditions. Sustainability 2023, 15, 3760. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, D.; Ren, J. Optimization of process parameters for surface roughness and microhardness in dry milling of magnesium alloy using Taguchi with grey relational analysis. Int. J. Adv. Manuf. Technol. 2015, 81, 645–651. [Google Scholar] [CrossRef]
- Parsana, S.; Radadia, N.; Sheth, M.; Sheth, N.; Savsani, V.; Prasad, N.E.; Ramprabhu, T. Machining parameter optimization for EDM machining of Mg–RE–Zn–Zr alloy using multi-objective Passing Vehicle Search algorithm. Arch. Civ. Mech. Eng. 2018, 18, 799–817. [Google Scholar] [CrossRef]
- Kumar, R.; Katyal, P.; Kumar, K. Effect of End Milling Process Parameters and Corrosion Behaviour of ZE41A Magnesium Alloy using Taguchi Based GRA. Biointerface Res. Appl. Chem. 2022, 13, 214. [Google Scholar] [CrossRef]
- Kumar, R.; Katyal, P.; Mandhania, S. Grey relational analysis based multiresponse optimization for WEDM of ZE41A magnesium alloy. Int. J. Lightweight Mater. Manuf. 2022, 5, 543–554. [Google Scholar] [CrossRef]
- Suneesh, E.; Sivapragash, M. Multi-response optimisation of micro-milling performance while machining a novel magnesium alloy and its alumina composites. Measurement 2021, 168, 108345. [Google Scholar] [CrossRef]
- Shi, K.; Li, S.; Yu, Z.; Du, B.; Liu, K.; Du, W. Microstructure and mechanical performance of Mg-Gd-Y-Nd-Zr alloys prepared via pre-annealing, hot extrusion and ageing. J. Alloys Compd. 2023, 931, 167476. [Google Scholar] [CrossRef]
- Hantzsche, K.; Bohlen, J.; Wendt, J.; Kainer, K.U.; Yi, S.B.; Letzig, D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr. Mater. 2010, 63, 725–730. [Google Scholar] [CrossRef]
- Stanford, N.; Barnett, M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 2008, 496, 399–408. [Google Scholar] [CrossRef]
- Tekumalla, S.; Seetharaman, S.; Almajid, A.; Gupta, M. Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals 2014, 5, 1–39. [Google Scholar] [CrossRef]
- Li, X.; Qi, W.; Zheng, K.; Zhou, N. Enhanced strength and ductility of Mg–Gd–Y–Zr alloys by secondary extrusion. J. Magnes. Alloys 2013, 1, 54–63. [Google Scholar] [CrossRef]
- Zhao, H.; Qin, G.; Ren, Y.; Pei, W.; Chen, D.; Guo, Y. The maximum solubility of Y in α-Mg and composition ranges of Mg24Y5−x and Mg2Y1−x intermetallic phases in Mg–Y binary system. J. Alloys Compd. 2011, 509, 627–631. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Cai, H.; Zhao, Z.; Wang, Q.; Zhang, N.; Lei, C. Study on solution and aging heat treatment of a super high strength cast Mg-7.8Gd-2.7Y-2.0Ag-0.4Zr alloy. Mater. Sci. Eng. A 2022, 849, 143523. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Al-Samman, T. Microstructure and mechanical properties of Mg –2Gd –3Y –0.6Zr alloy upon conventional and hydrostatic extrusion. Mater. Lett. 2011, 65, 1726–1729. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, W.; Lindemann, J.; Leyens, C. Mechanical properties of the hot-rolled Mg–12Gd–3Y magnesium alloy. Mater. Chem. Phys. 2009, 118, 453–458. [Google Scholar] [CrossRef]
- Dong, J.; Liu, W.; Song, X.; Zhang, P.; Ding, W.; Korsunsky, A. Influence of heat treatment on fatigue behaviour of high-strength Mg–10Gd–3Y alloy. Mater. Sci. Eng. A 2010, 527, 6053–6063. [Google Scholar] [CrossRef]
- Angelini, V.; Ceschini, L.; Morri, A.; Apelian, D. Influence of Heat Treatment on Microstructure and Mechanical Properties of Rare Earth-Rich Magnesium Alloy. Int. J. Met. 2017, 11, 382–395. [Google Scholar] [CrossRef]
- Wang, D.; Fu, P.; Peng, L.; Wang, Y.; Ding, W. Development of high strength sand cast Mg–Gd–Zn alloy by co-precipitation of the prismatic β′ and β1 phases. Mater. Charact. 2019, 153, 157–168. [Google Scholar] [CrossRef]
- Varatharajulu, M.; Duraiselvam, M.; Pradeep, G.K.; Jagadeesh, B. Tool temperature thermographic study on end milling magnesium AZ31 using carbide tool. Mater. Chem. Phys. 2023, 295, 127077. [Google Scholar] [CrossRef]
- Mahesh, G.; Muthu, S.; Devadasan, S.R. Prediction of surface roughness of end milling operation using genetic algorithm. Int. J. Adv. Manuf. Technol. 2015, 77, 369–381. [Google Scholar] [CrossRef]
- Reddy, N.S.K.; Rao, P.V. Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms. Int. J. Adv. Manuf. Technol. 2006, 28, 463–473. [Google Scholar] [CrossRef]
- Narooei, K.D.; Ramli, R. Optimal Selection of Cutting Parameters for Surface Roughness in Milling Machining of AA6061-T6. Int. J. Eng. 2022, 35, 1170–1177. [Google Scholar] [CrossRef]
- Salahshoor, M.; Guo, Y.B. Surface integrity of biodegradable orthopedic magnesium–calcium alloy by high-speed dry face milling. Prod. Eng. 2011, 5, 641–650. [Google Scholar] [CrossRef]
- Premnath, A.A.; Alwarsamy, T.; Rajmohan, T. Experimental Investigation and Optimization of Process Parameters in Milling of Hybrid Metal Matrix Composites. Mater. Manuf. Process. 2012, 27, 1035–1044. [Google Scholar] [CrossRef]
Factors | Units | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
Spindle Speed | RPM | 500 | 1000 | 1500 |
Feed Rate | mm/min | 50 | 100 | 150 |
Depth of Cut | mm | 0.5 | 1 | 1.5 |
Run No. | Spindle Speed | Feed Rate | Depth of Cut |
---|---|---|---|
1 | 500 | 50 | 0.5 |
2 | 500 | 100 | 1 |
3 | 500 | 150 | 1.5 |
4 | 1000 | 50 | 1 |
5 | 1000 | 100 | 1.5 |
6 | 1000 | 150 | 0.5 |
7 | 1500 | 50 | 1.5 |
8 | 1500 | 100 | 0.5 |
9 | 1500 | 150 | 1 |
Run No | Ra (µm) | Rz (µm) | Sa (µm) | Sz (µm) | MRR (gm/min) | F (N) | Ci | Rank |
---|---|---|---|---|---|---|---|---|
1 | 0.17 | 0.76 | 1.23 | 10.00 | 1.53 | 33.07 | 0.47 | 6 |
2 | 0.10 | 0.48 | 0.66 | 5.02 | 0.25 | 9.70 | 0.56 | 4 |
3 | 0.08 | 0.37 | 1.13 | 10.58 | 0.78 | 40.75 | 0.45 | 8 |
4 | 0.12 | 0.55 | 0.83 | 5.05 | 0.75 | 23.14 | 0.55 | 5 |
5 | 0.21 | 0.98 | 0.61 | 9.22 | 0.44 | 17.35 | 0.38 | 9 |
6 | 0.12 | 0.50 | 0.55 | 5.22 | 0.83 | 18.03 | 0.66 | 1 |
7 | 0.15 | 0.70 | 1.04 | 10.07 | 1.39 | 38.13 | 0.47 | 7 |
8 | 0.12 | 0.53 | 0.28 | 5.01 | 0.20 | 10.73 | 0.57 | 3 |
9 | 0.15 | 0.64 | 0.49 | 5.07 | 0.63 | 18.03 | 0.57 | 2 |
Run No. | Ra (µm) | Rz (µm) | Sa (µm) | Sz (µm) | MRR (gm/min) | F (N) | Ci | Rank |
---|---|---|---|---|---|---|---|---|
1 | 0.09 | 0.43 | 0.95 | 9.96 | 0.84 | 20.06 | 0.56 | 3 |
2 | 0.21 | 0.92 | 0.75 | 10.04 | 0.33 | 21.19 | 0.36 | 9 |
3 | 0.20 | 0.86 | 1.18 | 10.02 | 1.55 | 49.57 | 0.39 | 8 |
4 | 0.14 | 0.67 | 1.24 | 10.12 | 1.04 | 26.57 | 0.45 | 7 |
5 | 0.18 | 0.79 | 0.47 | 4.99 | 0.47 | 23.41 | 0.46 | 6 |
6 | 0.13 | 0.60 | 0.66 | 5.02 | 0.44 | 17.40 | 0.53 | 4 |
7 | 0.12 | 0.56 | 0.73 | 5.03 | 1.40 | 24.45 | 0.66 | 2 |
8 | 0.15 | 0.66 | 0.34 | 5.02 | 0.19 | 13.89 | 0.51 | 5 |
9 | 0.04 | 0.17 | 0.66 | 5.10 | 1.29 | 28.66 | 0.76 | 1 |
Run No. | Ra (µm) | Rz (µm) | Sa (µm) | Sz (µm) | MRR (gm/min) | F (N) | Ci | Rank |
---|---|---|---|---|---|---|---|---|
1 | 0.14 | 0.62 | 1.35 | 10.45 | 0.66 | 15.03 | 0.57 | 7 |
2 | 0.13 | 0.62 | 0.66 | 9.96 | 0.35 | 16.67 | 0.59 | 5 |
3 | 0.13 | 0.67 | 0.77 | 10.01 | 0.97 | 59.50 | 0.51 | 8 |
4 | 0.22 | 0.94 | 0.91 | 9.97 | 1.03 | 27.17 | 0.58 | 6 |
5 | 0.15 | 0.67 | 0.49 | 4.96 | 0.47 | 20.81 | 0.64 | 3 |
6 | 0.19 | 0.84 | 0.61 | 5.26 | 0.41 | 12.49 | 0.61 | 4 |
7 | 0.11 | 0.51 | 1.02 | 9.95 | 1.43 | 96.44 | 0.44 | 9 |
8 | 0.14 | 0.63 | 0.55 | 5.06 | 0.59 | 25.78 | 0.66 | 2 |
9 | 0.16 | 0.67 | 0.64 | 5.08 | 0.63 | 18.71 | 0.67 | 1 |
Run No. | Ra (µm) | Rz (µm) | Sa (µm) | Sz (µm) | MRR (gm/min) | F (N) | Ci | Rank |
---|---|---|---|---|---|---|---|---|
1 | 0.21 | 0.88 | 0.01 | 9.99 | 1.01 | 64.85 | 0.51 | 5 |
2 | 0.11 | 0.51 | 0.55 | 5.18 | 0.63 | 37.28 | 0.56 | 3 |
3 | 0.13 | 0.60 | 0.61 | 5.04 | 1.41 | 87.56 | 0.52 | 4 |
4 | 0.16 | 0.74 | 0.87 | 10.11 | 1.90 | 110.56 | 0.40 | 9 |
5 | 0.18 | 0.79 | 0.78 | 9.91 | 0.74 | 27.63 | 0.47 | 7 |
6 | 0.14 | 0.58 | 0.54 | 4.95 | 1.01 | 26.49 | 0.60 | 1 |
7 | 0.07 | 0.34 | 0.82 | 5.02 | 2.32 | 176.11 | 0.47 | 8 |
8 | 0.15 | 0.69 | 0.70 | 10.39 | 0.48 | 15.95 | 0.49 | 6 |
9 | 0.12 | 0.61 | 0.59 | 5.01 | 1.25 | 47.19 | 0.59 | 2 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | % |
---|---|---|---|---|---|---|
Speed | 2 | 0.003455 | 0.001728 | 0.29 | 0.777 | 6.09 |
Feed | 2 | 0.007092 | 0.003546 | 0.59 | 0.629 | 12.51 |
DOC | 2 | 0.034147 | 0.017074 | 2.84 | 0.260 | 60.21 |
Error | 2 | 0.012014 | 0.006007 | 21.19 | ||
Total | 8 | 0.056709 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | % |
---|---|---|---|---|---|---|
Speed | 2 | 0.07285 | 0.036425 | 2.39 | 0.295 | 56.09 |
Feed | 2 | 0.025372 | 0.012686 | 0.83 | 0.546 | 19.53 |
DOC | 2 | 0.001152 | 0.000576 | 0.04 | 0.964 | 0.89 |
Error | 2 | 0.030517 | 0.015258 | 23.49 | ||
Total | 8 | 0.129891 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | % |
---|---|---|---|---|---|---|
Speed | 2 | 0.004185 | 0.002093 | 0.46 | 0.686 | 10.14 |
Feed | 2 | 0.015477 | 0.007738 | 1.69 | 0.372 | 37.49 |
DOC | 2 | 0.012475 | 0.006238 | 1.36 | 0.423 | 30.21 |
Error | 2 | 0.009151 | 0.004576 | 22.16 | ||
Total | 8 | 0.041288 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | % |
---|---|---|---|---|---|---|
Speed | 2 | 0.002557 | 0.001279 | 0.32 | 0.756 | 7.94 |
Feed | 2 | 0.017505 | 0.008752 | 2.21 | 0.311 | 54.35 |
DOC | 2 | 0.004231 | 0.002116 | 0.53 | 0.652 | 13.14 |
Error | 2 | 0.007913 | 0.003957 | 24.57 | ||
Total | 8 | 0.032207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadrashta, A.; Saravanan, S.; Annamalai, A.R. Experimental Study on Dry Milling of Stir-Casted and Heat-Treated Mg-Gd-Y-Er Alloy Using TOPSIS. J. Manuf. Mater. Process. 2024, 8, 205. https://doi.org/10.3390/jmmp8050205
Upadrashta A, Saravanan S, Annamalai AR. Experimental Study on Dry Milling of Stir-Casted and Heat-Treated Mg-Gd-Y-Er Alloy Using TOPSIS. Journal of Manufacturing and Materials Processing. 2024; 8(5):205. https://doi.org/10.3390/jmmp8050205
Chicago/Turabian StyleUpadrashta, Abhinav, Sudharsan Saravanan, and A. Raja Annamalai. 2024. "Experimental Study on Dry Milling of Stir-Casted and Heat-Treated Mg-Gd-Y-Er Alloy Using TOPSIS" Journal of Manufacturing and Materials Processing 8, no. 5: 205. https://doi.org/10.3390/jmmp8050205
APA StyleUpadrashta, A., Saravanan, S., & Annamalai, A. R. (2024). Experimental Study on Dry Milling of Stir-Casted and Heat-Treated Mg-Gd-Y-Er Alloy Using TOPSIS. Journal of Manufacturing and Materials Processing, 8(5), 205. https://doi.org/10.3390/jmmp8050205