Investigation of Friction Hydro-Pillar Processing as a Repair Technique for Offshore Mooring Chain Links
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Joint Analyses
3.2. Residual Stress Evaluation
4. Conclusions
- The residual stress analysis exhibited distinguished behaviors in all directions with a typical “M” shape behavior with tensile peaks in the HAZ and compressive peaks in the TMAZ in the transversal direction. However, an inverted “M” format was observed in the longitudinal direction, and a scatter tensile profile was observed in the normal direction. The PWHT restored the RS properties, generating similar and homogeneous profiles in all directions.
- The microhardness analysis of the as-repaired condition revealed a significant increase in the TMAZ and a reduction in the HAZ softening zone.
- With the 4 h PWHT condition, the maximum hardness values were reduced below those of the parent material. The microstructure evaluation presented a tempered martensitic phase in the HAZ and a mixture of lower and upper bainite, bainitic ferrite with non-aligned carbide, and tempered martensite in the TMAZ.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, N.R. Ship Construction and Welding; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2, ISBN 978-981-10-2953-0. [Google Scholar]
- IACS. 2008 Requirements Concerning Materials and Welding; International Association of Classification Societies: London, UK, 2016. [Google Scholar]
- Mishra, R.; Kumar, N. Friction Stir Welding and Processing; Springer International Publishing: Cham, Switzerland, 2014; ISBN 9783319070421. [Google Scholar]
- Landell, R.; Kanan, L.F.; Buzzatti, D.; Vicharapu, B.; De, A.; Clarke, T. Material Flow during Friction Hydro-Pillar Processing. Sci. Technol. Weld. Join. 2019, 25, 228–234. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Ciarapica, F.E.; D’Orazio, A.; Forcellese, A.; Simoncini, M. Sustainability Analysis of Friction Stir Welding of AA5754 Sheets. Procedia CIRP 2017, 62, 529–534. [Google Scholar] [CrossRef]
- Elyasi, M.; Taherian, J.; Hosseinzadeh, M.; Kubit, A.; Derazkola, H.A. The Effect of Pin Thread on Material Flow and Mechanical Properties in Friction Stir Welding of AA6068 and Pure Copper. Heliyon 2023, 9, e14752. [Google Scholar] [CrossRef] [PubMed]
- Joshani, E.; Beidokhti, B.; Davodi, A.; Amelzadeh, M. Evaluation of Dissimilar 7075 Aluminum/AISI 304 Stainless Steel Joints Using Friction Stir Welding. J. Alloys Metall. Syst. 2023, 3, 100017. [Google Scholar] [CrossRef]
- Buzzatti, D.T.; Buzzatti, J.T.; dos Santos, R.E.; Mattei, F.; Chludzinski, M.; Strohaecker, T.R. Friction Hydro Pillar Processing: Characteristics and Applications. Soldag. Inspeção 2015, 20, 287–299. [Google Scholar] [CrossRef]
- Vyas, H.D.; Mehta, K.P.; Badheka, V.; Doshi, B. Processing and Evaluation of Dissimilar Al-SS Friction Welding of Pipe Configuration: Nondestructive Inspection, Properties, and Microstructure. Meas. J. Int. Meas. Confed. 2021, 167, 108305. [Google Scholar] [CrossRef]
- Joshi, G.R.; Badheka, V.J.; Darji, R.S.; Oza, A.D.; Pathak, V.J.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P.; Narwade, G.; Thirunavukarasu, G. The Joining of Copper to Stainless Steel by Solid-State Welding Processes: A Review. Materials 2022, 15, 7234. [Google Scholar] [CrossRef]
- Ahmad Mir, F.; Zaman Khan, N.; Noor Siddiquee, A.; Parvez, S. Friction Based Solid State Welding—A Review. Mater. Today Proc. 2022, 62, 55–62. [Google Scholar] [CrossRef]
- Meyer, A. Friction Hydro Pillar Processing; Technischen Universität Braunschweig: Braunschweig, Germany, 2002. [Google Scholar]
- Iracheta, O.; Bennett, C.J.; Sun, W. A Sensitivity Study of Parameters Affecting Residual Stress Predictions in Finite Element Modelling of the Inertia Friction Welding Process. Int. J. Solids Struct. 2015, 71, 180–193. [Google Scholar] [CrossRef]
- Wang, Y.; Sebeck, K.; Tess, M.; Gingrich, E.; Feng, Z.; Haynes, J.A.; Lance, M.J.; Muralidharan, G.; Marchel, R.; Kirste, T.; et al. Interfacial Microstructure and Mechanical Properties of Rotary Inertia Friction Welded Dissimilar 422 Martensitic Stainless Steel to 4140 Low Alloy Steel Joints. Mater. Sci. Eng. A 2023, 885, 145607. [Google Scholar] [CrossRef]
- Khalfallah, F.; Boumerzoug, Z.; Rajakumar, S.; Raouache, E. Optimization by RSM on Rotary Friction Welding of AA1100 Aluminum Alloy and Mild Steel. Int. Rev. Appl. Sci. Eng. 2020, 11, 34–42. [Google Scholar] [CrossRef]
- Nicholas, E.D.; Jones, S.B.; Lilly, R.H.; Dawes, C.J.; Dolby, R.E. Friction Forming. European Patent Specification 0602072B1, 1992. [Google Scholar]
- Pinheiro, G.A. Local Reinforcement of Magnesium Components by Friction Processing: Determination of Bonding Mechanisms and Assessment of Joint Properties; Technischen Universität Hamburg-Harburg: Harburg, Germany, 2008. [Google Scholar]
- Amavisca, C.V.; Cordenonsi da Fonseca, G.; Diehl, I.L.; Buzzatti, D.T.; Rosauro Clarke, T.G. Investigation of the Residual Stress Distribution in Repairs in H13 Steel by Friction Hydro Pillar Processing. Sci. Technol. Weld. Join. 2020, 25, 503–510. [Google Scholar] [CrossRef]
- James, M.N.; Hattingh, D.G.; Asquith, D.; Newby, M.; Doubell, P. Residual Stresses in Condition Monitoring and Repair of Thermal Power Generation Components. Theor. Appl. Fract. Mech. 2017, 92, 289–297. [Google Scholar] [CrossRef]
- Toribio, J.; Lorenzo, M.; Vergara, D.; Kharin, V. Effects of Manufacturing-Induced Residual Stresses and Strains on Hydrogen Embrittlement of Cold Drawn Steels. Procedia Eng. 2011, 10, 3540–3545. [Google Scholar] [CrossRef]
- Withers, P.J.; Bhadeshia, H.K.D.H. Residual Stress Part 1—Measurement Techniques. Mater. Sci. Technol. 2001, 17, 355–365. [Google Scholar] [CrossRef]
- Paes, M.T.P. Processamento Termomecânico de Pinos de Aço no Interior de Cavidades de Aço C-Mn Através de Soldagem Por Atrito Rotacional; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Hattingh, D.G.; Bulbring, D.L.H.; Els-Botes, A.; James, M.N. Process Parameter Influence on Performance of Friction Taper Stud Welds in AISI 4140 Steel. Mater. Des. 2011, 32, 3421–3430. [Google Scholar] [CrossRef]
- Hattingh, D.G.; Steuwer, A.; James, M.N.; Wedderburn, I.N. Residual Stresses in Overlapping Friction Taper Stud Welds. Mater. Sci. Forum 2010, 652, 111–115. [Google Scholar] [CrossRef]
- De Moraes, C.A.P.; Chludzinski, M.; Nunes, R.M.; Lemos, G.V.B.; Reguly, A. Residual Stress Evaluation in API 5L X65 Girth Welded Pipes Joined by Friction Welding and Gas Tungsten Arc Welding. J. Mater. Res. Technol. 2019, 8, 988–995. [Google Scholar] [CrossRef]
- Lancaster, J.F. Handbook of Structural Welding; Woofhead Publishing Ltd.: Cambridge, UK, 1997. [Google Scholar]
- Buzzatti, D.T.; Chludzinki, M.; Dos Santos, R.E.; Buzzatti, J.T.; Lemos, G.V.B.; Mattei, F.; Marinho, R.R.; Paes, M.T.P.; Reguly, A. Toughness Properties of a Friction Hydro Pillar Processed Offshore Mooring Chain Steel. J. Mater. Res. Technol. 2019, 8, 2625–2637. [Google Scholar] [CrossRef]
- Poeste, T.; Wimpory, R.C.; Schneider, R. The New and Upgraded Neutron Instruments for Material Science at HMI—Current Activities in Cooperation with Industry. Mater. Sci. Forum 2006, 524–525, 223–228. [Google Scholar] [CrossRef]
- Gibmeier, J.; Kornmeier, J.; Hofmann, M. Neutron Diffraction Stress Analysis of near Surface Stress Gradients of Surface Treated Steel Samples. Adv. X-ray Anal. 2009, 52, 279–286. [Google Scholar]
- Webster, G.A.; Wimpory, R.C. Development of Procedures for the Measurement of Residual Stress by Neutron Diffraction. Appl. Phys. A Mater. Sci. Process. 2002, 74, S1227–S1229. [Google Scholar] [CrossRef]
- Wimpory, R.C.; Ohms, C.; Hofmann, M.; Schneider, R.; Youtsos, A.G. Statistical Analysis of Residual Stress Determinations Using Neutron Diffraction. Int. J. Press. Vessel. Pip. 2009, 86, 48–62. [Google Scholar] [CrossRef]
- Hu, L.; Li, X.; Luo, W.; Li, S.; Deng, D. Residual Stress and Deformation in UHS Quenched Steel Butt-Welded Joint. Int. J. Mech. Sci. 2023, 245, 108099. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Bainite in Steels Theory and Practice, 3rd ed.; CRC Press: London, UK, 2019; ISBN 9781909662742. [Google Scholar]
- Yi, J.; Gharghouri, M.; Bocher, P.; Medraj, M. Distortion and Residual Stress Measurements of Induction Hardened AISI 4340 Discs. Mater. Chem. Phys. 2013, 142, 248–258. [Google Scholar] [CrossRef]
- Chen, M.; Xing, S.; Liu, H.; Jiang, C.; Zhan, K.; Ji, V. Determination of Surface Mechanical Property and Residual Stress Stability for Shot-Peened SAF2507 Duplex Stainless Steel by in Situ X-Ray Diffraction Stress Analysis. J. Mater. Res. Technol. 2020, 9, 7644–7654. [Google Scholar] [CrossRef]
- Hirsh, T.K.; Rocha, A.d.S.; Nunes, R.M. Characterization of Local Residual Stress Inhomogeneities in Combined Wire Drawing Processes of AISI 1045 Steel Bars. Int. J. Adv. Manuf. Technol. 2014, 70, 661–668. [Google Scholar] [CrossRef]
- Roy, T.; Paradowska, A.; Abrahams, R.; Law, M.; Mutton, P.; Soodi, M.; Yan, W. Residual Stress in Laser Cladded Heavy-Haul Rails Investigated by Neutron Diffraction. J. Mater. Process. Technol. 2020, 278, 116511. [Google Scholar] [CrossRef]
- Sun, J.; Dilger, K. Influence of Preheating on Residual Stresses in Ultra-High Strength Steel Welded Components. J. Mater. Res. Technol. 2023, 25, 3120–3136. [Google Scholar] [CrossRef]
- Akrivos, V.; Muransky, O.; Depradeux, L.; Smith, M.C.; Vasileiou, A.; Deaconu, V.; Kapadia, P. On the Accurate Prediction of Residual Stress in a Three-Pass Slot Nickel-Base Repair Weld by Numerical Simulations. J. Manuf. Mater. Process. 2022, 6, 61. [Google Scholar] [CrossRef]
Chemical Composition (wt.%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Cr | Mo | Ni | Al | Cu | Ti |
0.214 | 0.250 | 0.980 | 0.005 | 0.008 | 1.060 | 0.252 | 0.533 | 0.012 | 0.151 | 0.002 |
Mechanical properties of API Specification 2F Grade R4 [2] | ||||||||||
Yield Strength Min. (N/mm2) | Ultimate Tensile Strength Min. (N/mm2) | Elongation Min. (%) | ||||||||
580 | 860 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, R.E.; Chludzinski, M.; Nunes, R.M.; Marinho, R.R.; Paes, M.T.P.; Reguly, A. Investigation of Friction Hydro-Pillar Processing as a Repair Technique for Offshore Mooring Chain Links. J. Manuf. Mater. Process. 2023, 7, 200. https://doi.org/10.3390/jmmp7060200
dos Santos RE, Chludzinski M, Nunes RM, Marinho RR, Paes MTP, Reguly A. Investigation of Friction Hydro-Pillar Processing as a Repair Technique for Offshore Mooring Chain Links. Journal of Manufacturing and Materials Processing. 2023; 7(6):200. https://doi.org/10.3390/jmmp7060200
Chicago/Turabian Styledos Santos, Rafael Eugenio, Mariane Chludzinski, Rafael Menezes Nunes, Ricardo Reppold Marinho, Marcelo Torres Piza Paes, and Afonso Reguly. 2023. "Investigation of Friction Hydro-Pillar Processing as a Repair Technique for Offshore Mooring Chain Links" Journal of Manufacturing and Materials Processing 7, no. 6: 200. https://doi.org/10.3390/jmmp7060200
APA Styledos Santos, R. E., Chludzinski, M., Nunes, R. M., Marinho, R. R., Paes, M. T. P., & Reguly, A. (2023). Investigation of Friction Hydro-Pillar Processing as a Repair Technique for Offshore Mooring Chain Links. Journal of Manufacturing and Materials Processing, 7(6), 200. https://doi.org/10.3390/jmmp7060200