Applying a Neural Network-Based Machine Learning to Laser-Welded Spark Plasma Sintered Steel: Predicting Vickers Micro-Hardness
Abstract
:1. Introduction
2. Significance of the Research
3. Experimental Process
3.1. Materials
3.2. Spark Plasma Sintering Process
3.3. Laser Welding Process
3.4. Microhardness Test
4. ANN Algorithm
4.1. ANN Architecture
4.2. Activation Function
4.3. The Cost Function
4.4. Back-Propagation
4.5. Optimizer
4.6. Model Implementation and Learning
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ouali, N.; Khenfer, K.; Belkessa, B.; Fajoui, J.; Cheniti, B.; Idir, B.; Branchu, S. Effect of Heat Input on Microstructure, Residual Stress, and Corrosion Resistance of UNS 32101 Lean Duplex Stainless Steel Weld Joints. J. Mater. Eng. Perform. 2019, 28, 4252–4264. [Google Scholar] [CrossRef]
- Degnan, C.; Shipway, P.; Wood, J. Elevated temperature sliding wear behaviour of TiC-reinforced steel matrix composites. Wear 2001, 251, 1444–1451. [Google Scholar] [CrossRef]
- Chandramouli, R.; Kandavel, T.; Karthikeyan, P. Experimental investigations on welding behaviour of sintered and forged Fe–0.3% C–3% Mo low alloy steel. Mater. Des. 2014, 53, 645–650. [Google Scholar] [CrossRef]
- Suresh, M.; Krishna, B.V.; Venugopal, P.; Rao, K.P. Effect of pulse frequency in gas tungsten arc welding of powder metallurgical preforms. Sci. Technol. Weld. Join. 2004, 9, 362–368. [Google Scholar] [CrossRef]
- Cui, G.; Kou, Z. The effect of boron on mechanical behavior and microstructure for Fe–Cr matrix alloy prepared by P/M. J. Alloys Compd. 2014, 586, 699–702. [Google Scholar] [CrossRef]
- Das, A.; Harimkar, S.P. Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites. J. Mater. Sci. Technol. 2014, 30, 1059–1070. [Google Scholar] [CrossRef]
- Diouf, S.; Molinari, A. Densification mechanisms in spark plasma sintering: Effect of particle size and pressure. Powder Technol. 2012, 221, 220–227. [Google Scholar] [CrossRef]
- Jain, J.; Kar, A.M.; Upadhyaya, A. Effect of YAG addition on sintering of P/M 316L and 434L stainless steels. Mater. Lett. 2004, 58, 2037–2040. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Buvanashekaran, G.; Sankaranarayanasamy, K. Modeling of laser beam welding of stainless steel sheet butt joint using neural networks. CIRP J. Manuf. Sci. Technol. 2010, 3, 80–84. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Dimitriu, R.; Bhadeshia, H.; Fillon, C.; Poloni, C. Strength of ferritic steels: Neural networks and genetic programming. Mater. Manuf. Process. 2008, 24, 10–15. [Google Scholar] [CrossRef]
- Malinov, S.; Sha, W. Application of artificial neural networks for modelling correlations in titanium alloys. Mater. Sci. Eng. A 2004, 365, 202–211. [Google Scholar] [CrossRef]
- Solano-Alvarez, W.; Peet, M.; Pickering, E.; Jaiswal, J.; Bevan, A.; Bhadeshia, H. Synchrotron and neural network analysis of the influence of composition and heat treatment on the rolling contact fatigue of hypereutectoid pearlitic steels. Mater. Sci. Eng. A 2017, 707, 259–269. [Google Scholar] [CrossRef]
- Bhadeshia, H.; MacKay, D.; Svensson, L.-E. Impact toughness of C–Mn steel arc welds–Bayesian neural network analysis. Mater. Sci. Technol. 1995, 11, 1046–1051. [Google Scholar] [CrossRef] [Green Version]
- Allegri, G. Modelling fatigue delamination growth in fibre-reinforced composites: Power-law equations or artificial neural networks? Mater. Des. 2018, 155, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Anjum, Z.; Qayyum, F.; Khushnood, S.; Ahmed, S.; Shah, M. Prediction of non-propagating fretting fatigue cracks in Ti6Al4V sheet tested under pin-in-dovetail configuration: Experimentation and numerical simulation. Mater. Des. 2015, 87, 750–758. [Google Scholar] [CrossRef]
- Guo, L.; Roelofs, H.; Lembke, M.; Bhadeshia, H. Modelling of transition from upper to lower bainite in multi-component system. Mater. Sci. Technol. 2017, 33, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, M.; Bhaduri, A.; Raj, B.; Rao, K.P. Artificial neural network modelling of solidification mode in austenitic stainless steel welds. Mater. Sci. Technol. 2007, 23, 451–459. [Google Scholar] [CrossRef]
- Cassar, D.R.; de Carvalho, A.C.; Zanotto, E.D. Predicting glass transition temperatures using neural networks. Acta Mater. 2018, 159, 249–256. [Google Scholar] [CrossRef]
- Liu, G.; Jia, L.; Kong, B.; Guan, K.; Zhang, H. Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys. Mater. Des. 2017, 129, 210–218. [Google Scholar] [CrossRef]
- Xia, X.; Nie, J.; Davies, C.; Tang, W.; Xu, S.; Birbilis, N. An artificial neural network for predicting corrosion rate and hardness of magnesium alloys. Mater. Des. 2016, 90, 1034–1043. [Google Scholar] [CrossRef]
- Dehabadi, V.M.; Ghorbanpour, S.; Azimi, G. Application of artificial neural network to predict Vickers microhardness of AA6061 friction stir welded sheets. J. Cent. South Univ. 2016, 23, 2146–2155. [Google Scholar] [CrossRef]
- Saoudi, A.; Fellah, M.; Hezil, N.; Lerari, D.; Khamouli, F.; Atoui, L.h.; Bachari, K.; Morozova, J.; Obrosov, A.; Samad, M.A. Prediction of mechanical properties of welded steel X70 pipeline using neural network modelling. Int. J. Press. Vessel. Pip. 2020, 186, 104153. [Google Scholar] [CrossRef]
- Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 26–31. [Google Scholar]
- Hansson, M.; Olsson, C. Feedforward Neural Networks with ReLU Activation Functions Are Linear Splines. Bachelor’s Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Hu, Y.; Shi, Y.; Sun, K.; Shen, X.; Wang, Z. Microstructure and mechanical properties of underwater hyperbaric FCA-welded duplex stainless steel joints. J. Mater. Processing Technol. 2018, 261, 31–38. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Khalaj, M.-j.; Nazerfakhari, M.; Khalaj, G. Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels. J. Iron Steel Res. Int. 2015, 22, 446–450. [Google Scholar] [CrossRef]
- Gunn, R. Duplex Stainless Steels: Microstructure, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Spears, B.K.; Brase, J.; Bremer, P.-T.; Chen, B.; Field, J.; Gaffney, J.; Kruse, M.; Langer, S.; Lewis, K.; Nora, R. Deep learning: A guide for practitioners in the physical sciences. Phys. Plasmas 2018, 25, 080901. [Google Scholar] [CrossRef]
- Rojas, R. The Back-Propagation Algorithm. In Neural Networks; Springer: Berlin/Heidelberg, Germany, 1996; pp. 149–182. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Mohammed, G.R.; Ishak, M.; Aqida, S.N.; Abdulhadi, H.A. Effects of heat input on microstructure, corrosion and mechanical characteristics of welded austenitic and duplex stainless steels: A review. Metals 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.K.; Sai, N.V.; Krishna, A.G. Influence of sintering conditions on microstructure and mechanical properties of alloy 218 steels by powder metallurgy route. Arab. J. Sci. Eng. 2018, 43, 4659–4674. [Google Scholar] [CrossRef]
- Olanipekun, A.; Mashinini, M.; Maledi, N. Data on sintering, Nd:YAG welding and vickers hard-ness value of 2507 duplex stainless steel (DSS). Mendeley Data 2020, 2. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Nazari, A.; Fataei, P.; Livary, A.K.; Jandaghi, M. Predicting Charpy impact energy of Al6061/SiCp laminated nanocomposites in crackics divider and crack arrester forms. Ceram. Int. 2013, 39, 6099–6106. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Monazzah, A.H.; Bagheri, R.; Reihani, S.S.; Khalaj, G.; Nazari, A.; Jandaghi, M. Toughness prediction in functionally graded Al6061/SiCp composites produced by roll-bonding. Ceram. Int. 2014, 40, 8809–8825. [Google Scholar] [CrossRef]
Material | C | P | Si | Ni | N | Mn | S | Cr | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|---|
2507 | 0.02 | 0.014 | 0.4 | 7.1 | 0.31 | 0.8 | 0.001 | 24.4 | 3.76 | Balance |
Model | Parameter | Value |
---|---|---|
ANN | Number of input layers | 4 |
Number of hidden Layers | 2,3 | |
Number of output layer | 1 | |
Maximum no. of epochs | 750 | |
Activation function | RMSprop | |
Learning rate | 0.001 |
Parameter | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
S-temp | 900 | 1100 | 1000 | 83.41 |
S-time | 5.0 | 10 | 1733 | 2.41 |
Wel-power | 1500 | 2000 | 1733 | 210 |
Wel-speed | 2.0 | 3.0 | 2.67 | 0.48 |
Model | Training | Test | ||
---|---|---|---|---|
R2 | MAE | R2 | MAE | |
Trial and error ANN | ||||
Hidden layers | ||||
2 | 0.43 | 9.6 | 0.54 | 15.42 |
3 | 0.41 | 10.50 | 0.57 | 15.42 |
S.Number | True Values | Predictions | % Error |
---|---|---|---|
2 | 351.70 | 35.56 | 1.38 |
28 | 377.20 | 382.58 | 1.43 |
13 | 331.80 | 349.17 | 5.23 |
10 | 347.60 | 349.17 | 0.45 |
26 | 396.90 | 382.58 | 3.61 |
24 | 380.90 | 382.58 | 0.44 |
27 | 392.70 | 382.58 | 2.58 |
11 | 325.00 | 349.17 | 7.44 |
17 | 347.90 | 349.17 | 0.36 |
22 | 380.40 | 382.58 | 0.57 |
5 | 362.80 | 356.56 | 1.72 |
16 | 386.10 | 349.17 | 9.57 |
8 | 356.90 | 356.56 | 0.09 |
14 | 349.90 | 349.17 | 0.21 |
23 | 373.70 | 382.58 | 2.38 |
20 | 354.00 | 382.58 | 8.07 |
1 | 350.10 | 356.56 | 1.85 |
29 | 395.10 | 382.58 | 3.17 |
6 | 356.70 | 356.56 | 0.04 |
4 | 337.50 | 356.56 | 5.65 |
18 | 381.80 | 349.18 | 8.55 |
19 | 355.70 | 349.19 | 1.84 |
9 | 361.20 | 356.56 | 1.28 |
7 | 357.00 | 356.56 | 0.12 |
S.Number | True Values | Prediction | % Error |
---|---|---|---|
0 | 343.70 | 356.56 | 3.74 |
3 | 365.70 | 365.56 | 2.47 |
12 | 310.00 | 349.17 | 12.64 |
15 | 339.00 | 349.17 | 2.91 |
21 | 379.00 | 382.58 | 0.95 |
25 | 401.0 | 382.58 | 4.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olanipekun, A.T.; Mashinini, P.M.; Owojaiye, O.A.; Maledi, N.B. Applying a Neural Network-Based Machine Learning to Laser-Welded Spark Plasma Sintered Steel: Predicting Vickers Micro-Hardness. J. Manuf. Mater. Process. 2022, 6, 91. https://doi.org/10.3390/jmmp6050091
Olanipekun AT, Mashinini PM, Owojaiye OA, Maledi NB. Applying a Neural Network-Based Machine Learning to Laser-Welded Spark Plasma Sintered Steel: Predicting Vickers Micro-Hardness. Journal of Manufacturing and Materials Processing. 2022; 6(5):91. https://doi.org/10.3390/jmmp6050091
Chicago/Turabian StyleOlanipekun, Ayorinde Tayo, Peter Madindwa Mashinini, Oluwakemi Adejoke Owojaiye, and Nthabiseng Beauty Maledi. 2022. "Applying a Neural Network-Based Machine Learning to Laser-Welded Spark Plasma Sintered Steel: Predicting Vickers Micro-Hardness" Journal of Manufacturing and Materials Processing 6, no. 5: 91. https://doi.org/10.3390/jmmp6050091
APA StyleOlanipekun, A. T., Mashinini, P. M., Owojaiye, O. A., & Maledi, N. B. (2022). Applying a Neural Network-Based Machine Learning to Laser-Welded Spark Plasma Sintered Steel: Predicting Vickers Micro-Hardness. Journal of Manufacturing and Materials Processing, 6(5), 91. https://doi.org/10.3390/jmmp6050091