Mechanisms and Control Strategies for Morphing Structures in Quadrotors: A Review and Future Prospects
Abstract
Highlights
- Morphing UAVs employ diverse mechanisms including closed-chain linkages, bioinspired structures, and compliant materials, enabling versatile geometric adaptability.
- Control strategies such as reinforcement learning, sliding mode control, and model predictive control improve stability during dynamic morphology changes.
- Integration of morphing mechanisms with adaptive control expands UAV operational capabilities, supporting missions in confined spaces and critical applications like wildfire suppression.
Abstract
1. Introduction
2. Morphing and Control of Structures for UAVs
2.1. Mechanism for Morphing
2.1.1. Closed-Chain Mechanisms for Morphing UAVs
2.1.2. Open-Chain Mechanisms for Morphing UAVs
2.2. Morphing Wings
2.3. Control
3. Future Prospects and Discussion
3.1. Emerging Trends and Future Directions in Morphing UAV Control Systems
- Trend 1: Reinforcement Learning (RL)
- Trend 2: Coordinated Morphing-Flight Control Loops
- Trend 3: Stability-Proven Nonlinear Controllers
- Trend 4: Real-Time Adaptive and Segmented Modeling
- Trend 5: Morphing-Aware AI + Physics Fusion
3.2. Key Current Limitations
- Actuation Energy and Structural Weight
- Lack of Real-World Validation
- Aeroelastic and Fatigue Challenges
- Limited Bidirectional Integration
3.3. Research Gaps & Future Directions:
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falanga, D.; Kleber, K.; Mintchev, S.; Floreano, D.; Scaramuzza, D. The foldable drone: A morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 2018, 4, 209–216. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, S.; Xu, L.; Zhao, D.; Guo, K.; Yu, X.; Guo, L. Covert Attack Detection and Resilient Control of Quadcopter. IEEE Trans. Ind. Inform. 2025, 21, 3924–3933. [Google Scholar] [CrossRef]
- Natrayan, L.; Kaliappan, S.; Pundir, S. Control and Monitoring of a Quadcopter in Border Areas Using Embedded System. In Proceedings of the 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 September 2023; pp. 91–94. [Google Scholar]
- Mogili, U.R.; Deepak, B. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Daud, S.M.S.M.; Yusof, M.Y.P.M.; Heo, C.C.; Khoo, L.S.; Singh, M.K.C.; Mahmood, M.S.; Nawawi, H. Applications of drone in disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Lee, A.J.; Song, W.; Yu, B.; Choi, D.; Tirtawardhana, C.; Myung, H. Survey of robotics technologies for civil infrastructure inspection. J. Infrastruct. Intell. Resil. 2023, 2, 100018. [Google Scholar] [CrossRef]
- Skygauge. Big Infrastructure Has Big Challenges. Available online: https://www.skygauge.co/ (accessed on 24 June 2025).
- Ghelichi, Z.; Gentili, M.; Mirchandani, P.B. Drone logistics for uncertain demand of disaster-impacted populations. Transp. Res. Part C Emerg. Technol. 2022, 141, 103735. [Google Scholar] [CrossRef]
- AL-Dosari, K.; Hunaiti, Z.; Balachandran, W. Systematic review on civilian drones in safety and security applications. Drones 2023, 7, 210. [Google Scholar] [CrossRef]
- Berrahal, S.; Kim, J.-H.; Rekhis, S.; Boudriga, N.; Wilkins, D.; Acevedo, J. Border surveillance monitoring using quadcopter UAV-aided wireless sensor networks. J. Commun. Softw. Syst. 2016, 12, 67–82. [Google Scholar] [CrossRef]
- Ma, B.; Liu, Z.; Zhao, W.; Yuan, J.; Long, H.; Wang, X.; Yuan, Z. Target tracking control of UAV through deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5983–6000. [Google Scholar] [CrossRef]
- Muda, N.R.S.; Fadilah, M.F. Design of NRSM II Version of Quadcopter Drone Equipped with 7, 62 mm Caliber Weapon for Combat Operations. Int. IJNRSM 2025, 5, 851–864. [Google Scholar]
- Limon, I.A.; Hossain, A.D.; Faruque, K.F.I.; Uddin, M.R.; Hasan, M. Drone-Based Real-Time Air Pollution Monitoring for Low-Access Areas by Developing Mobile-Smart Sensing Technology. In Proceedings of the 2023 3rd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 7–8 January 2023; pp. 90–94. [Google Scholar]
- Perikleous, D.; Koustas, G.; Velanas, S.; Margariti, K.; Velanas, P.; Gonzalez-Aguilera, D. A novel drone design based on a reconfigurable unmanned aerial vehicle for wildfire management. Drones 2024, 8, 203. [Google Scholar] [CrossRef]
- McGuire, M.; Rys, M.J.; Rys, A. A Study of How Unmanned Aircraft Systems Can Support the Kansas Department of Transportation’s Efforts to Improve Efficiency, Safety, and Cost Reduction. 2016. Available online: https://rosap.ntl.bts.gov/view/dot/31030/dot_31030_DS1.pdf (accessed on 20 November 2024).
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Loquercio, A.; Tang, J.; Wang, T.-H.; Malik, J.; Mueller, M.W. A learning-based quadcopter controller with extreme adaptation. IEEE Trans. Robot. 2025, 41, 3948–3964. [Google Scholar] [CrossRef]
- Tauseef, M.; Reddy, T.S.S.; Sravani, K. A Comprehensive Survey on Unmanned Aerial Vehicles (UAVs): Types, Structural Components, Communication Systems, and Operating Platforms. In Proceedings of the 2025 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India, 16–17 January 2025; pp. 1–6. [Google Scholar]
- Ciresa, S. Enhancing Safety for Autonomous VTOL Drone Deliveries Through Range, Flight Time, and Battery Predictions. 2025. Available online: https://aaltodoc.aalto.fi/server/api/core/bitstreams/6089fbd1-fbc6-40c7-a73b-5e3be3c9aab3/content (accessed on 20 November 2024).
- Xing, S.; Zhang, X.; Tian, J.; Xie, C.; Chen, Z.; Sun, J. Morphing Quadrotors: Enhancing Versatility and Adaptability in Drone Applications—A Review. Drones (2504-446X) 2024, 8, 762. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, F.; Wang, Z.; Wang, K.; Cao, Y.; Xu, C.; Gao, F. Ring-rotor: A novel retractable ring-shaped quadrotor with aerial grasping and transportation capability. IEEE Robot. Autom. Lett. 2023, 8, 2126–2133. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Zhang, K. A Novel Morphing Quadrotor UAV with Sarrus-Linkage-Based Reconfigurable Frame. In Proceedings of the 2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Chicago, IL, USA, 23–26 June 2024; pp. 283–289. [Google Scholar]
- Xu, M.; De, Q.; Yu, D.; Hu, A.; Liu, Z.; Wang, H. Biomimetic Morphing Quadrotor inspired by Eagle claw for dynamic grasping. IEEE Trans. Robot. 2024, 40, 2513–2528. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Botez, R.M. Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modelling. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2009, 223, 655–668. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Botez, R.M.; Popov, A.V.; Mamou, M.; Mébarki, Y. A hybrid fuzzy logic proportional-integral-derivative and conventional on-off controller for morphing wing actuation using shape memory alloy Part 1: Morphing system mechanisms and controller architecture design. Aeronaut. J. 2012, 116, 433–449. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Botez, R.M.; Popov, A.V.; Mamou, M.; Mébarki, Y. A hybrid fuzzy logic proportional-integral-derivative and conventional on-off controller for morphing wing actuation using shape memory alloy Part 2: Controller implementation and validation. Aeronaut. J. 2012, 116, 451–465. [Google Scholar] [CrossRef]
- Bai, S.; Chirarattananon, P. Splitflyer air: A modular quadcopter that disassembles into two bicopters mid-air. IEEE/ASME Trans. Mechatron. 2022, 27, 4729–4740. [Google Scholar] [CrossRef]
- Haluška, J.; Västanälv, J.; Papadimitriou, A.; Nikolakopoulos, G. Soft pneumatic actuated morphing quadrotor: Design and development. In Proceedings of the 2022 30th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 28 June–1 July 2022; pp. 475–480. [Google Scholar]
- Yang, T.; Wu, H.-N.; Wang, J.-W. cc-DRL: A Convex Combined Deep Reinforcement Learning Flight Control Design for a Morphing Quadrotor. arXiv 2024, arXiv:2408.13054. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Pei, Z.; Shi, J.; Tang, Z. Design, modeling and control of a novel morphing quadrotor. IEEE Robot. Autom. Lett. 2021, 6, 8013–8020. [Google Scholar] [CrossRef]
- Patnaik, K.; Zhang, W. Adaptive attitude control for foldable quadrotors. IEEE Control. Syst. Lett. 2023, 7, 1291–1296. [Google Scholar] [CrossRef]
- Tuna, T.; Ovur, S.E.; Gokbel, E.; Kumbasar, T. Design and development of FOLLY: A self-foldable and self-deployable quadcopter. Aerosp. Sci. Technol. 2020, 100, 105807. [Google Scholar] [CrossRef]
- Modi, H.; Su, H.; Liang, X.; Zheng, M. MorphoCopter: Design, Modeling, and Control of a New Transformable Quad-Bi Copter. arXiv 2025, arXiv:2506.07204. [Google Scholar]
- Desbiez, A.; Expert, F.; Boyron, M.; Diperi, J.; Viollet, S.; Ruffier, F. X-Morf: A crash-separable quadrotor that morfs its X-geometry in flight. In Proceedings of the 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS); IEEE: Piscataway, NJ, USA, 2017; pp. 222–227. [Google Scholar]
- Sihite, E.; Kalantari, A.; Nemovi, R.; Ramezani, A.; Gharib, M. Multi-Modal Mobility Morphobot (M4) with appendage repurposing for locomotion plasticity enhancement. Nat. Commun. 2023, 14, 3323. [Google Scholar] [CrossRef]
- Liu, T.; Wang, S.; Liu, H.; He, G. Engineering perspective on bird flight: Scaling, geometry, kinematics and aerodynamics. Prog. Aerosp. Sci. 2023, 142, 100933. [Google Scholar] [CrossRef]
- Kumar, R.; Deshpande, A.M.; Wells, J.Z.; Kumar, M. Flight control of sliding arm quadcopter with dynamic structural parameters. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 1358–1363. [Google Scholar]
- Kamel, M.; Verling, S.; Elkhatib, O.; Sprecher, C.; Wulkop, P.; Taylor, Z.; Siegwart, R.; Gilitschenski, I. The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robot. Autom. Mag. 2018, 25, 34–44. [Google Scholar] [CrossRef]
- Ruiz, F.; Arrue, B.C.; Ollero, A. Sophie: Soft and flexible aerial vehicle for physical interaction with the environment. IEEE Robot. Autom. Lett. 2022, 7, 11086–11093. [Google Scholar] [CrossRef]
- Sharma, S.; Verhoeff, M.; Joosen, F.; Prasad, R.V.; Hamaza, S. A morphing quadrotor-blimp with balloon failure resilience for mobile ecological sensing. IEEE Robot. Autom. Lett. 2024, 9, 6408–6415. [Google Scholar] [CrossRef]
- Singh, K.; Mehndiratta, M.; Feroskhan, M. Quadplus: Design, modeling, and receding-horizon-based control of a hyperdynamic quadrotor. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 1766–1779. [Google Scholar] [CrossRef]
- Kim, C.; Lee, H.; Jeong, M.; Myung, H. A morphing quadrotor that can optimize morphology for transportation. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 9683–9689. [Google Scholar]
- Riviere, V.; Manecy, A.; Viollet, S. Agile robotic fliers: A morphing-based approach. Soft Robot. 2018, 5, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Avant, T.; Lee, U.; Katona, B.; Morgansen, K. Dynamics, hover configurations, and rotor failure restabilization of a morphing quadrotor. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 4855–4862. [Google Scholar]
- Chen, M.; Shen, Y.; Skelton, R.E. Model-based and Markov data-based linearized tensegrity dynamics and analysis of morphing airfoils. In Proceedings of the AIAA Scitech 2024 Forum, Orlando, FL, USA, 8–12 January 2024; p. 2347. [Google Scholar]
- Chen, M.; Liu, J.; Skelton, R.E. Design and control of tensegrity morphing airfoils. Mech. Res. Commun. 2020, 103, 103480. [Google Scholar] [CrossRef]
- Bucki, N.; Mueller, M.W. Design and control of a passively morphing quadcopter. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9116–9122. [Google Scholar]
- Ruggia, M.; Bermes, C. FLIFO: A Passively Morphing Drone for Small Gap Traversal. In Proceedings of the 2025 International Conference on Unmanned Aircraft Systems (ICUAS), Charlotte, NC, USA, 14–17 May 2025; pp. 214–221. [Google Scholar]
- Patnaik, K.; Mishra, S.; Sorkhabadi, S.M.R.; Zhang, W. Design and Control of SQUEEZE: A Spring-augmented QUadrotor for intEractions with the Environment to squeeZE-and-fly. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 1364–1370. [Google Scholar]
- Zhao, M.; Kawasaki, K.; Chen, X.; Noda, S.; Okada, K.; Inaba, M. Whole-body aerial manipulation by transformable multirotor with two-dimensional multilinks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5175–5182. [Google Scholar]
- Sofla, A.; Meguid, S.; Tan, K.; Yeo, W. Shape morphing of aircraft wing: Status and challenges. Mater. Des. 2010, 31, 1284–1292. [Google Scholar] [CrossRef]
- Smart High Lift Devices for Next Generation Wings. Available online: https://cordis.europa.eu/project/id/213442/reporting (accessed on 20 June 2025).
- Smart Intelligent Aircraft Structures. Available online: https://cordis.europa.eu/project/id/284562/it (accessed on 20 June 2025).
- Valldosera Martinez, R.; Afonso, F.; Lau, F. Aerodynamic shape optimisation of a camber morphing airfoil and noise estimation. Aerospace 2022, 9, 43. [Google Scholar] [CrossRef]
- Barbarino, S.; Bilgen, O.; Ajaj, R.M.; Friswell, M.I.; Inman, D.J. A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 2011, 22, 823–877. [Google Scholar] [CrossRef]
- Lentink, D.; Müller, U.K.; Stamhuis, E.; De Kat, R.; Van Gestel, W.; Veldhuis, L.; Henningsson, P.; Hedenström, A.; Videler, J.J.; Van Leeuwen, J.L. How swifts control their glide performance with morphing wings. Nature 2007, 446, 1082–1085. [Google Scholar] [CrossRef]
- Saito, K.; Agnese, F.; Scarpa, F. A cellular kirigami morphing wingbox concept. J. Intell. Mater. Syst. Struct. 2011, 22, 935–944. [Google Scholar] [CrossRef]
- Ajaj, R.; Flores, E.S.; Friswell, M.; Allegri, G.; Woods, B.; Isikveren, A.; Dettmer, W. The Zigzag wingbox for a span morphing wing. Aerosp. Sci. Technol. 2013, 28, 364–375. [Google Scholar] [CrossRef]
- Ajaj, R.; Friswell, M.; Bourchak, M.; Harasani, W. Span morphing using the GNATSpar wing. Aerosp. Sci. Technol. 2016, 53, 38–46. [Google Scholar] [CrossRef]
- Ameduri, S.; Concilio, A.; Dimino, I.; Pecora, R.; Ricci, S. AIRGREEN2-clean sky 2 programme: Adaptive Wing technology maturation, challenges and perspectives. Smart Mater. Adapt. Struct. Intell. Syst. 2018, 51944, V001T004A023. [Google Scholar]
- Shape Adaptive Blades for Rotorcraft Efficiency Project Website. Available online: https://cordis.europa.eu/project/id/723491/results (accessed on 20 November 2024).
- Concilio, A.; Dimino, I.; Pecora, R. SARISTU: Adaptive trailing edge device (ATED) design process review. Chin. J. Aeronaut. 2021, 34, 187–210. [Google Scholar] [CrossRef]
- Steenhuizen, D.; van Tooren, M. The implementation of a knowledge-based framework for the aerodynamic optimization of a morphing wing device. Adv. Eng. Inform. 2012, 26, 207–218. [Google Scholar] [CrossRef]
- Elelwi, M.; Botez, R.M.; Dao, T.-M. Structural sizing and topology optimization based on weight minimization of a variable tapered span-morphing wing for aerodynamic performance improvements. Biomimetics 2021, 6, 55. [Google Scholar] [CrossRef]
- Hashemi, S.; Botez, R. Lyapunov-based robust adaptive configuration of the UAS-S4 flight dynamics fuzzy controller. Aeronaut. J. 2022, 126, 1187–1209. [Google Scholar] [CrossRef]
- Botez, R.M.; Koreanschi, A.; Gabor, O.S.; Tondji, Y.; Guezguez, M.; Kammegne, J.; Grigorie, L.; Sandu, D.; Mebarki, Y.; Mamou, M. Numerical and experimental transition results evaluation for a morphing wing and aileron system. Aeronaut. J. 2018, 122, 747–784. [Google Scholar] [CrossRef]
- Koreanschi, A.; Gabor, O.S.; Acotto, J.; Brianchon, G.; Portier, G.; Botez, R.M.; Mamou, M.; Mebarki, Y. Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I–Aerodynamic optimization using genetic, bee colony and gradient descent algorithms. Chin. J. Aeronaut. 2017, 30, 149–163. [Google Scholar] [CrossRef]
- Negahban, M.H.; Bashir, M.; Traisnel, V.; Botez, R.M. Seamless morphing trailing edge flaps for UAS-S45 using high-fidelity aerodynamic optimization. Chin. J. Aeronaut. 2024, 37, 12–29. [Google Scholar]
- Bashir, M.; Zonzini, N.; Martel, S.L.; Botez, R.M.; Ceruti, A.; Wong, T. Numerical investigation of the dynamic stall reduction on the UAS-S45 aerofoil using the optimised aerofoil method. Aeronaut. J. 2024, 128, 441–468. [Google Scholar] [CrossRef]
- Akiyama, D. Accelerating advances in environmental performance. In Proceedings of the ICAO Seminar on the Environment, Montreal, QC, Canada, 1 April 2014; pp. 9–10. [Google Scholar]
- DARPA. Complex Adaptive System Composition and Design Environment (CASCADE). 2015. Available online: https://www.darpa.mil/research/programs/complex-adaptive-system-composition-and-design-environment (accessed on 20 November 2024).
- NASA. Adaptive Compliant Trailing Edge Flight Experiment. Available online: https://ntrs.nasa.gov/citations/20160000871 (accessed on 20 June 2025).
- Li, D.; Zhao, S.; Da Ronch, A.; Xiang, J.; Drofelnik, J.; Li, Y.; Zhang, L.; Wu, Y.; Kintscher, M.; Monner, H.P. A review of modelling and analysis of morphing wings. Prog. Aerosp. Sci. 2018, 100, 46–62. [Google Scholar] [CrossRef]
- Harvey, C.; Gamble, L.L.; Bolander, C.R.; Hunsaker, D.F.; Joo, J.J.; Inman, D.J. A review of avian-inspired morphing for UAV flight control. Prog. Aerosp. Sci. 2022, 132, 100825. [Google Scholar] [CrossRef]
- Zheng, H.; Cai, G.; Wang, Y.; Zhou, B. Integrated attitude and morphing control for morphing aircrafts: A method to improve aerodynamic efficiency. Aerosp. Sci. Technol. 2025, 166, 110553. [Google Scholar] [CrossRef]
- Kammegne, M.T.; Botez, R.; Grigorie, L.; Mamou, M.; Mébarki, Y. A new hybrid control methodology for a morphing aircraft wing-tip actuation mechanism. Aeronaut. J. 2019, 123, 1757–1787. [Google Scholar] [CrossRef]
- MIL-STD-1797; Flying Qualities of Piloted Aircraft. Department of Defense: Washington, DC, USA, 2012.
- Şahin, H.; Kose, O.; Oktay, T. Simultaneous autonomous system and powerplant design for morphing quadrotors. Aircr. Eng. Aerosp. Technol. 2022, 94, 1228–1241. [Google Scholar] [CrossRef]
- Cui, G.; Xia, R.; Jin, X.; Tang, Y. Motion planning and control of a morphing quadrotor in restricted scenarios. IEEE Robot. Autom. Lett. 2024, 9, 5759–5766. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, M.; Skelton, R.E. Markov data-based reference tracking control to tensegrity morphing airfoils. Eng. Struct. 2023, 291, 116430. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, W.; Peng, C.; Wang, G.; Shen, Y. Comparative validation study on bioinspired morphology-adaptation flight performance of a morphing quad-rotor. IEEE Robot. Autom. Lett. 2021, 6, 5145–5152. [Google Scholar] [CrossRef]
- Li, C.; Wu, H.; Yang, T. Coordinated Control of Flight and Morphing for Morphing Quadrotor via Reinforcement Learning. IEEE Trans. Aerosp. Electron. Syst. 2025, 1–10. [Google Scholar] [CrossRef]
- Dong, F.; Yuan, B.; Zhao, X.; Ding, Z.; Chen, S. Adaptive robust constraint-following control for morphing quadrotor UAV with uncertainty: A segmented modeling approach. J. Frankl. Inst. 2024, 361, 106678. [Google Scholar] [CrossRef]
- Bai, Y.; Gururajan, S. Evaluation of a baseline controller for autonomous “figure-8” flights of a morphing geometry quadcopter: Flight performance. Drones 2019, 3, 70. [Google Scholar] [CrossRef]
- Derrouaoui, S.H.; Bouzid, Y.; Belmouhoub, A.; Guiatni, M. Improved robust control of a new morphing quadrotor uav subject to aerial configuration change. Unmanned Syst. 2025, 13, 171–191. [Google Scholar] [CrossRef]
- Mandralis, I.; Murray, R.M.; Gharib, M. Quadrotor Morpho-Transition: Learning vs Model-Based Control Strategies. arXiv 2025, arXiv:2506.14039. [Google Scholar]
- Hamzeh, F.; Fathollahi Dehkordi, S.; Naeimifard, A.; Abyaz, A. Continuously Variable Geometry Quadrotor: Robust Control via PSO-Optimized Sliding Mode Control. Actuators 2025, 14, 308. [Google Scholar]
- Cai, X.; Win, S.K.H.; Foong, S. QuadRotary: Design and Control of In-Flight Transition Between Quadcopter and Rotary-Wing. IEEE/ASME Trans. Mechatron. 2025, 1–11. [Google Scholar] [CrossRef]
- Tan, J.K.; Kamath, A.K.; Singh, K.; Feroskhan, M. HEXmorph: Fault tolerance against single and dual rotor failure using geometric morphing on hexacopter. Robot. Auton. Syst. 2025, 193, 105047. [Google Scholar] [CrossRef]
- Pandya, S. NMPC-based Unified Posture Manipulation and Thrust Vectoring for Agile and Fault-Tolerant Flight of a Morphing Aerial Robot. Master’s Thesis, Northeastern University, Boston, MA, USA, 2025. [Google Scholar]
- Yang, Y.; Yu, X.; Li, Z.; Basin, M.V. A new overactuated multirotor: Prototype design, dynamics modeling, and control. IEEE Trans. Ind. Electron. 2023, 71, 9449–9459. [Google Scholar] [CrossRef]
- Geronel, R.; Botez, R.; Bueno, D. Dynamic responses due to the Dryden gust of an autonomous quadrotor UAV carrying a payload. Aeronaut. J. 2023, 127, 116–138. [Google Scholar] [CrossRef]
- Geronel, R.S.; Botez, R.M.; Bueno, D. A vibration suppression for payloads attached to an UAV based on SMA springs. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1586. [Google Scholar]
- Geronel, R.S.; Botez, R.M.; Bueno, D.D. On the Effect of Flexibility on the Dynamics of a Suspended Payload Carried by a Quadrotor. Designs 2022, 6, 31. [Google Scholar] [CrossRef]
- Alsammak, I.L.H.; Mahmoud, M.A.; Aris, H.; AlKilabi, M.; Mahdi, M.N. The use of swarms of unmanned aerial vehicles in mitigating area coverage challenges of forest-fire-extinguishing activities: A systematic literature review. Forests 2022, 13, 811. [Google Scholar] [CrossRef]
- Acar, O.; Honkavaara, E. A Review of Vehicles for Fire Suppression. 2024. Available online: https://www.researchgate.net/publication/383792582_A_Review_of_Vehicles_for_Fire_Suppression (accessed on 10 August 2024).
- Xing, Z. Wind Estimation and Control of Unmanned Aerial Vehicles with Application to Forest Fire Surveillance. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2022. [Google Scholar]
- Gammill, M.E. Natural Energy Harvesting Mechanisms for a Drone on Titan; New Mexico Institute of Mining and Technology: Socorro, NM, USA, 2022. [Google Scholar]
- Jin, J.-W.; Ahn, D. Development of a lightweight carbon fiber reinforced plastic water tank for fire trucks. J. Sci. Adv. Mater. Devices 2024, 9, 100697. [Google Scholar] [CrossRef]
- Jain, K.P.; Mueller, M.W. Flying batteries: In-flight battery switching to increase multirotor flight time. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 3510–3516. [Google Scholar]
- Lee, D.; Zhou, J.; Lin, W.T. Autonomous battery swapping system for quadcopter. In Proceedings of the 2015 international conference on unmanned aircraft systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 118–124. [Google Scholar]
- Arowolo, M.; Azoti, W.; Castanié, B. Comparative study of the thermomechanical properties of natural fiber reinforced thermoplastic composites: A structural application for quadcopter design. Mech. Adv. Mater. Struct. 2025, 32, 1425–1446. [Google Scholar] [CrossRef]
Platform | Type of Chain (Closed/Open) | Actuation Method | Morphing Capability | Advantages | Limitations | Ref. |
---|---|---|---|---|---|---|
Foldable Drone | Open-chain (torsion spring–based passive folding) | Passive torsion springs + elastic constraints | Arms fold inward to reduce diameter for “squeezing” through gaps (%64 size change) | Lightweight, energy-efficient, no active actuators for morphing; enables gap navigation | Limited controllability of morphing process; deformation depends on external forces; | [1] |
Skygauge drone | Closed-chain (spherical mechanism) | 8 BLDC + 8 servos (total 16 motors) | Full thrust-vectoring; omnidirectional contact/control | Precise force-controlled contact inspection; stable fuselage | High complexity, weight, power draw; limited endurance | [8] |
Ring Rotor | Open-chain (string & spring passive retraction + servo) | Single servo + passive springs/strings | Retractable ring; uniform folding (length & width) %56 size change | Lightweight; frees central space for grasping | Limited structural rigidity; modest load capacity | [22] |
Sarrus linkage quadrotor | Closed-chain (Sarrus + parallelogram mechanism) | Single actuator (lead screw/servo) | Symmetric linear extension/retraction (~23% size change) | Single-DOF symmetric morphing; stable inertia changes | Limited morphing range; mechanical complexity in linkages | [23] |
Biomimetic claw-type design | Closed-chain (parallelogram mechanism 20-link) | Single central servomotor + gear-rack | Eagle-claw inspired vertical folding & grasping, %80 size change | Maintains prop orientation; versatile grasping/perching | Complex multi-link structure; heavier | [24] |
FOLLY quadrotor | Closed-chain (four-bar crank-rocker) | Single servo + spur gears | Rapid folding/deploy (0.6 s); ~62.7% volume reduction | Compact, low actuator count; experimentally validated | Mostly pre/post-flight morphing; limited in-flight reconfig. | [33] |
MorphoCopter | Closed-chain (4-bar rotary linkage) | Single servo | X → stacked bicopter, ~70% width reduction | Simple actuation; preserves control with tilted props | Only one-dimensional transformation | [34] |
X-Morf | Closed-chain (scissor joint + 4-bar) | Servo-driven scissor actuation | Up to ~28.5% span change (0.5 s) | Fast morphing; crash resilience | Dynamic stability challenges; inertia shifts | [35] |
M4 (Morphobot) | Open-chain | Multiple motors (4 per arm) | Appendage repurposing: wheels/legs/thrusters (multi-modal) | Exceptional locomotion plasticity; multi-terrain | Heavy, high power & control complexity | [36] |
Sliding-arm quadrotor | Open-chain (prismatic sliding joints) | Servo-driven sliding mechanisms | Variable arm length in flight | Inertia/CG adaptation; fault tolerance | Added actuation complexity and mass | [38] |
Voliro (tiltable rotors) | Open-chain (tilting rotor arms) | Servo-actuated rotor tilt | Independent rotor tilt for omnidirectional flight | Decouples orientation/position control; wall/contact tasks | Actuation & control complexity; energy cost | [39] |
SOPHIE | Open-chain/compliant body | Tendon actuation in TPU structure | Full-body deformation; perching & contact | Lightweight, compliant perching; safe interactions | Requires advanced learning-based control; material durability | [40] |
Quadrotor-Blimp | Open-chain (rotating arms + clutch) | Mechanically triggered rotation + elastic strips | Blimp ↔ quadrotor transform (~0.362 s) | Resilient, lightweight transformation; failure response | Limited payload; specialized mission niche | [41] |
QuadPlus | Open-chain (biaxial propeller tilting) | Servo-based biaxial linkages | Up to ~100°/180° tilt axes; wide thrust vectoring | High agility; decoupled attitude/position control | Complex control & actuator requirements | [42] |
FLIFO | Open-chain (passive hinges triggered by flip) | Passive hinged mechanism (no extra actuators) | 50% width reduction via flipping maneuver | No extra actuators; lightweight, simple | Requires a controlled flip maneuver; timing/precision needed | [49] |
SQUEEZE | Open-chain (torsion springs, passive compression) | Passive torsion springs + central band | Diameter reduction by passive squeeze, %68 size change | Energy-efficient, gap-navigation capability | Limited active control over configuration | [50] |
Project Name | Morphing Strategy | Scale | Key Outcomes | Ref. |
---|---|---|---|---|
SADE | Adaptive trailing edge with finger-rib mechanism | Full-scale (A320 model) | Demonstrated ~3% drag reduction in cruise, improved lift in takeoff | [53] |
SARISTU | Morphing droop nose, trailing edge, winglet | Full-scale (A320 outer wing section) | Validated multi-functional skin and actuator integration | [54] |
ACTE | Seamless trailing edge deformation (compliant mechanism) | Full-scale (GIII testbed) | Successful flight tests with noise and drag reduction | [73] |
RoboSwift | Variable sweep via feather-like wings | Small UAV (bird-scale) | Improved maneuverability and stealth through bio-inspired sweep actuation | [57] |
GNATSpar | Spanwise extension via telescoping spars | Wind tunnel scale | Demonstrated up to 40% span increase, maintaining structural stiffness | [60] |
Zigzag Wing Box | Span morphing with zigzag box geometry | Subscale | Achieved adaptive span with reduced bending stiffness impact | [59] |
SARISTU | Flexible composite morphing leading edge | A320 model | Maintained laminar flow; ~10% lift improvement at high AoA | [54] |
Wingbox | Combined twist and sweep via smart actuators | Small UAV | Validated twist morphing with distributed sensors and control | [58] |
Clean Sky 2 | Double-flapped active winglet | Transport scale | Gust load alleviation and improved fuel efficiency (~3% reduction) | [61] |
MDO-505 | Combined variable camber and twist morphing | Wind tunnel scale | Demonstrated multi-objective MDO techniques; validated shape-adaptable structures in subscale tests | [67] |
UAS-S4 | Telescopic wingspan and variable sweep | Simulation-Based Testing | Morphing surface of the airfoil between 20% and 65% of the chord | [66] |
UAS-S45 | Deflection of the wing tip around a hinged axis. | Wind tunnel scale | delayed the laminar-to-turbulent transition, especially in the 0.15–0.25 Mach range and angle of attack between −3° to +3°. | [77] |
Navion L-17 | Variable wingspans and sweep angles | Numerical simulation | the lift-drag ratio can be effectively improved by 1–2. | [76] |
Control Method | Target Morphing Type | Strategy | Projects |
---|---|---|---|
Open-loop Feedforward Control | Simple camber or span morphing | Predefined actuator inputs based on flight phase | SADE [53] |
PID-based Feedback Control | Twist, sweep, folding morphing | Proportional-Integral-Derivative control using sensor feedback | GNATSpar [60] |
Adaptive Control | Variable camber, twist | Gain-scheduling, real-time parameter estimation | SMA-actuated [25] |
Model Predictive Control (MPC) | Multi-axis morphing (twist + span) | Prediction-based control with constraint handling | SARISTU [54] |
Aeroelastic Feedback Control | Camber and leading-edge morphing | Closed-loop using aeroelastic deformation sensors | ACTE [73] |
Data-driven/AI-based Control | All morphing types (future scope) | Reinforcement learning, neural networks | SOPHIE [40] |
Optimal Control/MDO-based | Mission-driven morphing configuration | Optimization of shape & control inputs jointly | MDO-505 [67] |
Model-free cascade PID | the Sarrus linkage platform | PX4 autopilot for position control | Sarrus [23] |
Nonlinear Model-Predictive Control | Biaxial propeller tilting | Optimization-based feedback control | QuadPlus [42] |
Feedforward | Passively folding | Pixracer R15 flight controller, with PX4 autopilot | FLIFO [49] |
Hybrid Control | Wing/airfoil morphing | LQR + PI-FF + ESO, ANFIS scheduling | UAS-S45 [77] |
Fuzzy Controller | Spanning approximately 20% to 65% of the chord length | Lyapunov-based robust adaptive laws | UAS-S4 [66] |
High-level supervisory controller | Variable wingspans and sweep angles | Predefined lookup tables used to retune for each morphing configuration | Navion L-17 [76] |
Morphing Type | Controller (As Reported) | Experimental Validation? | Notes | Ref. |
---|---|---|---|---|
Sarrus linkage, single DOF | Cascade PID (arm + flight) | Yes (in-flight morphing) | Controller compensates geometry transitions. | [23] |
Biomimetic claw-type multi-link | Servo torque regulation, parallelogram structure | Yes (lab demo) | Stable transition with claw-like grasping capability. | [24] |
Four-bar bicopter (MorphoCopter) | Fixed-gain PID; torque-based leverage from tilted props | Yes (morphing transition test) | Tilting props restore roll control in narrow form. | [34] |
Soft body morphing (SOPHIE) | Reinforcement Learning/Quasi-static model | Partial (lab scale) | Soft structure demands learning-based feedback. | [40] |
Biaxial propeller tilting (QuadPlus) | Cascade control + NMPC | Yes/Simulation | NMPC aids recovery under actuator saturation. | [42] |
Rotating frame for payload balance | Adaptive control with real-time parameter estimation | Yes (grasp + drop demo) | Adjusts CG/inertia dynamically during morphing. | [43] |
Dual morphing arm (prismatic + revolute) | Lagrangian dynamics, torque-based control | Yes (sim + lab) | Achieves hover with 3 rotors post-failure. | [45] |
Flip-triggered passive morphing (FLIFO) | Feedforward controller, PX4-based | Yes (112 transitions) | Uses predefined flip; switches actuator matrices. | [49] |
Telescopic + sweep morphing (UAS-S4) | Fuzzy + Lyapunov-based adaptation | No | Broad span change (20–65%); only simulated, no mechanical validation. | [66] |
Variable span & sweep (Navion L-17) | Lookup table-based supervisory gain scheduling | Yes (HIL + flight tests) | Lacks adaptive learning; stability achieved through retuning. | [76] |
Wing/airfoil morphing | Hybrid: LQR + PI-FF + ESO, ANFIS scheduling | Yes (validated to MIL-STD) | Gain scheduling handles nonlinear dynamics. | [77] |
Morphing in narrow environments (segmented) | Constraint-following nonlinear controller + RLS estimator | Yes (sim + flight test) | Robust to disturbances; safety bounds enforced. | [80] |
Inward folding quad (span morphing) | PID (position) + PD (attitude) with morphing-aware inertia updates | Yes (wind & trajectory tests) | Control gain adaptation based on morphing angle. | [82] |
MEWC-FC + Morphing-state dependent controller | RL (PPO) + PSO for zero-shot generalization | Simulation | Bidirectional control loop; robust under morphology variation. | [83] |
Passive morphing with Pixhawk | Off-the-shelf ArduPilot PID | Yes (350+ flights) | Controller unmodified; morphing has mild effect on dynamics. | [85] |
Morphing trajectory + landing comparison | RL vs. MPC (control benchmark) | Yes | RL superior under faults; MPC better angular control. | [87] |
Continuously variable-length arms | PSO-tuned Sliding Mode Controller | No (simulation only) | Outperforms PID, but no Lyapunov proof or lab validation. | [88] |
Dual-mode (QuadRotary) | Lyapunov attitude + cascaded position controller | Yes (lab test) | Magnet-assisted hinges + actuator-free morphing; energy efficiency boosted in rotary mode. | [89] |
Multi-mode morphing | Geometric tracking controller on SE(3), Lyapunov-stable | Yes (real-time morphing) | Handles full morphing states without switching control laws. | [90] |
Servo-actuated arms with fixed-gain PID | Cascaded PID, empirically tuned | Yes (performance limited) | Responsive within morphing limits; degraded control at large configuration changes. | [91] |
Overactuated: tilting rotor UAV (Quad3DV) | Quaternion-based feedback linearization | Yes (simulation) | Redundant rotor control allocation with smooth large-angle handling. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acar, O.; Honkavaara, E.; Botez, R.M.; Bayburt, D.Ç. Mechanisms and Control Strategies for Morphing Structures in Quadrotors: A Review and Future Prospects. Drones 2025, 9, 663. https://doi.org/10.3390/drones9090663
Acar O, Honkavaara E, Botez RM, Bayburt DÇ. Mechanisms and Control Strategies for Morphing Structures in Quadrotors: A Review and Future Prospects. Drones. 2025; 9(9):663. https://doi.org/10.3390/drones9090663
Chicago/Turabian StyleAcar, Osman, Eija Honkavaara, Ruxandra Mihaela Botez, and Deniz Çınar Bayburt. 2025. "Mechanisms and Control Strategies for Morphing Structures in Quadrotors: A Review and Future Prospects" Drones 9, no. 9: 663. https://doi.org/10.3390/drones9090663
APA StyleAcar, O., Honkavaara, E., Botez, R. M., & Bayburt, D. Ç. (2025). Mechanisms and Control Strategies for Morphing Structures in Quadrotors: A Review and Future Prospects. Drones, 9(9), 663. https://doi.org/10.3390/drones9090663