Mission-Oriented Propulsion System Configuration and Whole Aircraft Redundancy Safety Performance for Distributed Electric Propulsion UAVs
Abstract
1. Introduction
- Establish a complete overall design method for propeller layout based on design indexes, highlighting DP UAV’s short takeoff/landing performance and cruise capability with smaller wings.
- Explore the effects of propeller numbers on aerodynamic performance and compare wingtip propeller installation impacts on flight performance.
- Automatically generate large-scale propeller geometry data via a BP neural network to match thrust requirements, maximizing distributed UAV configuration potential.
- Taking the whole UAV as the research object instead of the isolated wing–propeller model, in order to maximize the closeness to the design process of the actual UAV, and to provide a reference for engineering needs.
- Calculate the safety redundancy of different DP UAV configurations using the LQR method.
2. Methodology and Model
2.1. Analysis of Overall Aircraft Design Metrics
2.1.1. Requirement Analysis of the Whole Machine Design Index
2.1.2. Takeoff Distance Analysis
2.1.3. Cruise and High-Speed Flight Analysis
2.1.4. Flight Condition Analysis
2.2. Research and Analysis of UAV Propulsion Components
2.2.1. Analysis of Propeller Design to Meet Design Requirements
2.2.2. Thrust Design for Different Numbers of Propellers
2.2.3. Calculation and Analysis of Isolated Propeller Design Parameters
2.3. Computational Methods Research
2.3.1. Vortex Lattice Method and the Actuator Disk Method
2.3.2. Statement of Validity
2.4. UAV Safety Redundancy Study
3. Results
- Wingtip propellers: ‘T’ (with) and ‘N’ (without).
- Quantity: ‘P’ + numeral (e.g., ‘P3’ for three).
- Rotation: ‘CO’ (co-rotating), ‘CT’ (counter-rotating).
- Positioning: ‘X’ (chordwise) and ‘Z’ (spanwise) coordinates relative to wing leading edge.
3.1. UAV Aerodynamic Performance Parameter Results
3.1.1. Propeller Aerodynamic Performance Data
3.1.2. Calculation Results of Propeller Performance Parameters and Takeoff Ground Roll Distance of the UAV
3.1.3. Aerodynamic Performance of UAV in Cruise and High-Speed Stage
3.2. Optimization Calculations
4. Security Redundancy Analysis Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | |
ADT | Actuator Disk Theory |
BEMT | Blade Element Momentum Theory |
CFD | Computational Fluid Dynamics |
DP | Distributed Propulsion |
LQR | Linear Quadratic Regulator |
RANS | Reynolds-Averaged Navier–Stokes |
STOL | Short Takeoff and Landing |
UAV | Unmanned Aerial Vehicle |
VLM | Vortex Lattice Method |
Roman letters | |
a | Acceleration |
A | State matrix |
AVLM | Influence coefficient matrix |
b | Blade chord length |
B | Input matrix |
CD | Drag coefficient |
CL | Lift coefficient |
CP | Power coefficients |
CT | Thrust coefficients |
D | Drag |
dA | Actuator disk area element |
dF | Momentum thrust increment |
dQBEM | Blade element torque |
dr | Radial length element |
dTBEM | Blade element thrust |
F1 | Prandtl tip loss factor |
Fi | Propeller thrust of LQR |
Fpropeller | Single propeller thrust |
Ft | Total thrust of LQR |
Ftotal | Total propeller thrust |
g | Gravitational acceleration |
G | Aircraft weight |
GVLM | Vortex strength vector |
Izz | Yaw-axis inertia |
J | Advance ratio |
K | Feedback gain matrix |
m | Aircraft mass |
n | Propeller rotational speed |
NB | Number of blades |
Nr | Yaw damping derivative |
nVLM | Unit normal vector |
Nβ | Yaw moment derivative |
P | Riccati solution matrix |
Q | State weighting matrix |
Q∞ | Freestream velocity vector |
R | Input weighting matrix |
r | Yaw rate |
S | Takeoff distance |
T | Thrust |
t | Total time |
u | Control input vector |
u0 | Trim airspeed |
V | Instantaneous aircraft flight velocity |
Vˉ | Induced velocity |
V0 | Free-stream velocity |
Va | Axial induced velocity |
Va0 | Initial axial velocity |
Vr0 | Initial radial velocity |
Vt | Tangential induced velocity |
W | Relative wind velocity |
Wempty | Structure weight |
WPL | Fuel weight |
Wtol | The total weight of aircraft |
x | State vector |
Yr | Side force yaw damping |
Yβ | Side force derivative |
Greek letters | |
α | Angle of attack |
ωi | Propeller rotational speed |
ψ | Yaw angle |
ϕVLM | Perturbation velocity potential |
φT | Thrust inclination angle |
ϕ | Inflow angle |
ρ | Air density |
μ | Ground friction coefficient |
Γ | Vortex strength |
β | Sideslip angle |
∇ | Hamiltonian operator |
Appendix A
Incoming Velocity | Advance Ratio | Power Factor | Thrust Factor | Efficiency | Power | Thrust |
---|---|---|---|---|---|---|
10 | 0.14 | 0.10 | 0.18 | 0.24 | 63 kW | 1512 N |
20 | 0.28 | 0.11 | 0.17 | 0.42 | 66 kW | 1391 N |
30 | 0.42 | 0.11 | 0.15 | 0.56 | 68 kW | 1276 N |
40 | 0.55 | 0.11 | 0.14 | 0.66 | 69 kW | 1146 N |
50 | 0.69 | 0.11 | 0.12 | 0.74 | 69 kW | 1014 N |
60 | 0.83 | 0.11 | 0.10 | 0.80 | 66 kW | 872 N |
70 | 0.97 | 0.10 | 0.08 | 0.84 | 61 kW | 730 N |
80 | 1.11 | 0.09 | 0.07 | 0.87 | 54 kW | 583 N |
90 | 1.24 | 0.07 | 0.05 | 0.89 | 44 kW | 432 N |
Incoming Velocity | Advance Ratio | Power Factor | Thrust Factor | Efficiency | Power | Thrust |
---|---|---|---|---|---|---|
10 | 0.14 | 0.15 | 0.24 | 0.22 | 94 kW | 2043 N |
20 | 0.28 | 0.17 | 0.23 | 0.39 | 101 kW | 1938 N |
30 | 0.42 | 0.17 | 0.21 | 0.52 | 102 kW | 1767 N |
40 | 0.55 | 0.17 | 0.19 | 0.63 | 102 kW | 1601 N |
50 | 0.69 | 0.17 | 0.17 | 0.71 | 100 kW | 1426 N |
60 | 0.83 | 0.16 | 0.15 | 0.77 | 96 kW | 1233 N |
70 | 0.97 | 0.15 | 0.12 | 0.82 | 89 kW | 1047 N |
80 | 1.11 | 0.13 | 0.10 | 0.86 | 78 kW | 833 N |
90 | 1.24 | 0.11 | 0.07 | 0.88 | 64 kW | 622 N |
Incoming Velocity | Advance Ratio | Power Factor | Thrust Factor | Efficiency | Power | Thrust |
---|---|---|---|---|---|---|
10 | 0.14 | 0.24 | 0.33 | 0.19 | 147 kW | 2750 N |
20 | 0.28 | 0.24 | 0.31 | 0.35 | 146 kW | 2545 N |
30 | 0.42 | 0.24 | 0.28 | 0.48 | 144 kW | 2326 N |
40 | 0.55 | 0.24 | 0.25 | 0.59 | 144 kW | 2115 N |
50 | 0.69 | 0.24 | 0.23 | 0.67 | 142 kW | 1910 N |
60 | 0.83 | 0.23 | 0.20 | 0.75 | 136 kW | 1695 N |
70 | 0.97 | 0.21 | 0.17 | 0.79 | 124 kW | 1405 N |
80 | 1.11 | 0.18 | 0.14 | 0.84 | 109 kW | 1135 N |
90 | 1.24 | 0.15 | 0.10 | 0.87 | 89 kW | 855 N |
Incoming Velocity | Advance Ratio | Power Factor | Thrust Factor | Efficiency | Power | Thrust |
---|---|---|---|---|---|---|
10 | 0.14 | 0.32 | 0.39 | 0.16 | 192 kW | 3169 N |
20 | 0.28 | 0.31 | 0.37 | 0.33 | 188 kW | 3055 N |
30 | 0.42 | 0.29 | 0.33 | 0.46 | 177 kW | 2715 N |
40 | 0.55 | 0.29 | 0.30 | 0.57 | 175 kW | 2482 N |
50 | 0.69 | 0.29 | 0.27 | 0.65 | 172 kW | 2254 N |
60 | 0.83 | 0.27 | 0.24 | 0.72 | 163 kW | 1961 N |
70 | 0.97 | 0.25 | 0.20 | 0.78 | 150 kW | 1667 N |
80 | 1.11 | 0.22 | 0.16 | 0.82 | 130 kW | 1015 N |
90 | 1.24 | 0.18 | 0.12 | 0.86 | 107 kW | 1015 N |
Configuration | Propeller Size | Speed | Total Power | Propeller Thrust Output | Wingtip Propeller Thrust Output | CL of α = 14° |
---|---|---|---|---|---|---|
NP3CO | 1.41 m | 3200 rpm | 156 kW | 1667 N | / | 2.5 |
NP4CO | 1.21 m | 3800 rpm | 158 kW | 1250 N | / | 1.9 |
NP5CO | 1.14 m | 3800 rpm | 149 kW | 1000 N | / | 1.8 |
NP6CO | 1.01 m | 4400 rpm | 153 kW | 833 N | / | 1.86 |
NP7CO | 0.91 m | 5000 rpm | 157 kW | 714 N | / | 1.94 |
NP8CO | 0.88 m | 5000 rpm | 151 kW | 625 N | / | 2.09 |
NP3CT | 1.41 m | 3200 rpm | 156 kW | 1667 N | / | 2.6 |
NP4CT | 1.21 m | 3800 rpm | 158 kW | 1250 N | / | 1.85 |
NP5CT | 1.14 m | 3800 rpm | 149 kW | 1000 N | / | 1.78 |
NP6CT | 1.01 m | 4400 rpm | 153 kW | 833 N | / | 1.82 |
NP7CT | 0.91 m | 5000 rpm | 157 kW | 714 N | / | 1.89 |
NP8CT | 0.88 m | 5000 rpm | 151 kW | 625 N | / | 2.08 |
TP4CO | 1.14/1.48 m | 3800/3200 rpm | 221 kW | 1000 N | 2000 N | 1.65 |
TP5CO | 0.93/1.46 m | 5000/3200 rpm | 222 kW | 775 N | 1900 N | 1.3 |
TP6CO | 0.89/1.44 m | 5000/3200 rpm | 212 kW | 640 N | 1800 N | 1.88 |
TP7CO | 0.78/1.42 m | 6000/3200 rpm | 212 kW | 550 N | 1700 N | 1.8 |
TP8CO | 0.76/1.40 m | 6000/3200 rpm | 204 kW | 486 N | 1600 N | 1.9 |
TP9CO | 0.74/1.37 m | 6000/3200 rpm | 196 kW | 438 N | 1500 N | 1.88 |
TP4CT | 1.14/1.48 m | 3800/3200 rpm | 221 kW | 1000 N | 2000 N | 1.7 |
TP5CT | 0.93/1.46 m | 5000/3200 rpm | 222 kW | 775 N | 1900 N | 1.35 |
TP6CT | 0.89/1.44 m | 5000/3200 rpm | 212 kW | 640 N | 1800 N | 1.87 |
TP7CT | 0.78/1.42 m | 6000/3200 rpm | 212 kW | 550 N | 1700 N | 1.82 |
TP8CT | 0.76/1.40 m | 6000/3200 rpm | 204 kW | 486 N | 1600 N | 1.88 |
TP9CT | 0.74/1.37 m | 6000/3200 rpm | 196 kW | 438 N | 1500 N | 1.91 |
References
- Çelik, A.K.; Yalçınkaya, Ö.; Kutlu, M. The Causal Relationship between Air Transport and Economic Growth: Evidence from Top Ten Countries with the Largest Air Transport Volume. Transp. Policy 2025, 162, 521–532. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Li, J.; Zhuang, J. Aerodynamic Investigation for a Propeller-Induced Lift-Enhancing Vertical Take-off and Landing (VTOL) Configuration. Drones 2024, 9, 20. [Google Scholar] [CrossRef]
- Quiben Figueroa, R.; Cavallaro, R.; Cini, A. Feasibility Studies on Regional Aircraft Retrofitted with Hybrid-Electric Powertrains. Aerosp. Sci. Technol. 2024, 151, 109246. [Google Scholar] [CrossRef]
- Kim, H.D.; Perry, A.T.; Ansell, P.J. A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium; American Institute of Aeronautics and Astronautics, Cincinnati, OH, USA, 9 July 2018. [Google Scholar]
- Bao, D.; Yan, Y.; Li, Y.; Chu, J. The Future of Last-Mile Delivery: Lifecycle Environmental and Economic Impacts of Drone-Truck Parallel Systems. Drones 2025, 9, 54. [Google Scholar] [CrossRef]
- Patterson, M.D.; Borer, N.K.; German, B. A Simple Method for High-Lift Propeller Conceptual Design. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4 January 2016. [Google Scholar]
- Whitmore, S.A.; Merrill, R.S. Nonlinear Large Angle Solutions of the Blade Element Momentum Theory Propeller Equations. J. Aircr. 2012, 49, 1126–1134. [Google Scholar] [CrossRef]
- Sinnige, T.; Van Arnhem, N.; Stokkermans, T.C.A.; Eitelberg, G.; Veldhuis, L.L.M. Wingtip-Mounted Propellers: Aerodynamic Analysis of Interaction Effects and Comparison with Conventional Layout. J. Aircr. 2019, 56, 295–312. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, Z.; Fan, Z.; Guo, J. Aerodynamic Design of Tractor Propeller for High-Performance Distributed Electric Propulsion Aircraft. Chin. J. Aeronaut. 2021, 34, 20–35. [Google Scholar] [CrossRef]
- Firnhaber Beckers, M.; Schollenberger, M.; Lutz, T.; Bongen, D.; Radespiel, R.; Florenciano, J.L.; Funes-Sebastian, D.E. Numerical Investigation of High-Lift Propeller Positions for a Distributed Propulsion System. J. Aircr. 2023, 60, 995–1006. [Google Scholar] [CrossRef]
- Comunian, P.; Serpieri, J.; Cafiero, G. A Genetic-Algorithm Based Approach for Optimized Distributed Propulsion. In Proceedings of the AIAA Aviation Forum and Ascend 2024, Las Vegas, NV, USA, 29 July 2024. [Google Scholar]
- Wang, K.; Zhou, Z.; Zhu, X.; Xu, X. Aerodynamic Design of Multi-Propeller/Wing Integration at Low Reynolds Numbers. Aerosp. Sci. Technol. Aerosp. Sci. Technol. 2019, 84, 1–17. [Google Scholar] [CrossRef]
- Sheridan, C.N.; Pham, D.D.; Whiteside, S. Evaluation of VSPAERO Analysis Capabilities for Conceptual Design of Aircraft with Propeller-Blown Wings. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2 August 2021. [Google Scholar]
- De Vries, R.; Vos, R. Aerodynamic Performance Benefits of Over-the-Wing Distributed Propulsion for Hybrid-Electric Transport Aircraft. J. Aircr. 2023, 60, 1201–1218. [Google Scholar] [CrossRef]
- Qiao, G.; Barakos, G. Aerodynamic Assessment of Wingtip-Mounted Propeller and Distributed Propulsion System. Aeronaut. J. 2025, 129, 2179–2198. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, C.; Han, Z.; Wang, Y. Mid-Fidelity Aero-Propulsive Coupling Approach for Distributed Propulsion Aircraft. Aerosp. Sci. Technol. 2025, 157, 109859. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, H.; Shao, X.; Pan, D.; Zeng, L.; Wang, L. Meshless Simulation of Multi-Propeller/Wing Interactions in Typical Distributed Electric Propulsion Configurations. Aerosp. Sci. Technol. 2025, 163, 110287. [Google Scholar] [CrossRef]
- Guo, R.; Kou, P.; Liang, B.; Yao, X.; Man, Y.; Liang, D. Nonlinear Model Predictive Control for the Power Management in Hybrid Distributed Electric Aircraft: Considering Aerodynamics–Propulsion Coupling Effects. IEEE Trans. Transport. Electrific. 2025, 11, 7274–7286. [Google Scholar] [CrossRef]
- Sun, R.; Han, Y.; Wang, Y. Design of Generalized Fault Diagnosis Observer and Active Adaptive Fault Tolerant Controller for Aircraft Control System. Math. Biosci. Eng 2022, 19, 5591–5609. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Wei, J.; Wang, J.; Chen, Y. Fault Diagnosis Algorithm Based on Adjustable Nonlinear PI State Observer and Its Application in UAV Fault Diagnosis. Algorithms 2021, 14, 119. [Google Scholar] [CrossRef]
- Guo, J.; Qi, J.; Wu, C. Robust Fault Diagnosis and Fault-Tolerant Control for Nonlinear Quadrotor Unmanned Aerial Vehicle System with Unknown Actuator Faults. Int. J. Adv. Rob. Syst. 2021, 18, 17298814211002734. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J. Bibliographical Review on Reconfigurable Fault-Tolerant Control Systems. Annu. Rev. Control 2008, 32, 229–252. [Google Scholar] [CrossRef]
- Baskaya, E.; Bronz, M.; Delahaye, D. Fault Detection & Diagnosis for Small UAVs via Machine Learning. In Proceedings of the 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), St. Petersburg, FL, USA, 17–21 September 2017; pp. 1–6. [Google Scholar]
- Morani, G.; Garbarino, L.; Genito, N.; Di Capua, G. Multivariable Fault Tolerant Control for a Distributed Electric Propulsion Aircraft. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8 January 2024. [Google Scholar]
- Alves, P.; Silvestre, M.; Gamboa, P. Aircraft Propellers—Is There a Future? Energies 2020, 13, 4157. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, Y.; An, Y.; Wang, Q. New Actuator Disk Model for Propeller-Aircraft Computation. Sci. China Technol. Sci. 2016, 59, 1201–1207. [Google Scholar] [CrossRef]
- Cheng, Z.Y. Research on Rapid Design Method for Aerodynamic Layout of Distributed Electric Propulsion Aircraft. Master’s Thesis, Nanchang Hangkong University, Nanchang, China, 2023. [Google Scholar]
Design Indicators | Values |
---|---|
Takeoff weight | 3000 kg |
Takeoff ground roll distance | 200 m |
Wingspan | 19.8 m |
Height | 3.58 m |
Length | 9.7 m |
Aspect ratio | 13.6 |
Cruise speed | 250 km/h |
Cruise altitude | 6000 m |
Maximum cruise speed | 500 km/h |
Flight Stages | Flying Height | Flight Speed | Reynolds Number (×106) | Air Density | Temperature |
---|---|---|---|---|---|
Takeoff ground roll stage | 0 m | 0–40 m/s | 0–2.27 | 1.23 kg/m3 | 288 K |
Cruise stage | 6000 m | 70 m/s | 1.71 | 0.47 kg/m3 | 249 K |
High speed stage | 4000 m | 140 m/s | 5.73 | 0.82 kg/m3 | 262 K |
Landing ground roll stage | 0 m | 40–0 m/s | 0–2 | 1.23 kg/m3 | 288 K |
Climbing and descending stage | 2000–0 m | 70–40 m/s | 3.39–2.27 | 1.01–1.23 kg/m3 | 275–288 K |
Label | Propeller Thrust | Label | Propeller Thrust | Wingtip Propeller Thrust |
---|---|---|---|---|
NP3 | 1667 N | TP4 | 1000 N | 2000 N |
NP4 | 1250 N | TP5 | 775 N | 1900 N |
NP5 | 1000 N | TP6 | 640 N | 1800 N |
NP6 | 833 N | TP7 | 550 N | 1700 N |
NP7 | 714 N | TP8 | 486 N | 1600 N |
NP8 | 625 N | TP9 | 438 N | 1500 N |
Configuration | Takeoff Ground Roll Distance | LiftOff Distance | Total Distance | Configuration | Takeoff Ground Roll Distance | LiftOff Distance | Total Distance |
---|---|---|---|---|---|---|---|
NP3CO | 119 m | 38 m | 157 m | TP4CO | 124 m | 39 m | 163 m |
NP4CO | 112 m | 37 m | 149 m | TP5CO | 115 m | 38 m | 153 m |
NP5CO | 111 m | 37 m | 148 m | TP6CO | 114 m | 37 m | 151 m |
NP6CO | 116 m | 34 m | 150 m | TP7CO | 108 m | 33 m | 141 m |
NP7CO | 105 m | 34 m | 139 m | TP8CO | 103 m | 33 m | 136 m |
NP8CO | 101 m | 33 m | 134 m | TP9CO | 100 m | 31 m | 131 m |
NP3CT | 116 m | 40 m | 156 m | TP4CT | 119 m | 41 m | 160 m |
NP4CT | 110 m | 37 m | 147 m | TP5CT | 116 m | 38 m | 154 m |
NP5CT | 108 m | 37 m | 145 m | TP6CT | 112 m | 38 m | 150 m |
NP6CT | 106 m | 34 m | 140 m | TP7CT | 107 m | 35 m | 142 m |
NP7CT | 109 m | 34 m | 143 m | TP8CT | 106 m | 34 m | 140 m |
NP8CT | 102 m | 32 m | 134 m | TP9CT | 102 m | 32 m | 134 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, D.; Hou, Z.; Chen, S. Mission-Oriented Propulsion System Configuration and Whole Aircraft Redundancy Safety Performance for Distributed Electric Propulsion UAVs. Drones 2025, 9, 662. https://doi.org/10.3390/drones9090662
Chen Z, Liu D, Hou Z, Chen S. Mission-Oriented Propulsion System Configuration and Whole Aircraft Redundancy Safety Performance for Distributed Electric Propulsion UAVs. Drones. 2025; 9(9):662. https://doi.org/10.3390/drones9090662
Chicago/Turabian StyleChen, Ziyi, Duoneng Liu, Zhongxi Hou, and Suqi Chen. 2025. "Mission-Oriented Propulsion System Configuration and Whole Aircraft Redundancy Safety Performance for Distributed Electric Propulsion UAVs" Drones 9, no. 9: 662. https://doi.org/10.3390/drones9090662
APA StyleChen, Z., Liu, D., Hou, Z., & Chen, S. (2025). Mission-Oriented Propulsion System Configuration and Whole Aircraft Redundancy Safety Performance for Distributed Electric Propulsion UAVs. Drones, 9(9), 662. https://doi.org/10.3390/drones9090662