An Assessment of the Effectiveness of RGB-Camera Drones to Monitor Arboreal Mammals in Tropical Forests
Abstract
1. Introduction
2. Methods
2.1. Case Study: Preprogrammed Flights to Monitor Geoffroy’s Spider Monkey Populations
2.2. Case Study: Manual Flights for Southern Muriqui Population Monitoring
2.3. Hypothetical Detection Scenarios Using Preprogrammed Flights
3. Results
3.1. Case Study: Preprogrammed Flights to Monitor Geoffroy’s Spider Monkey Populations
3.2. Case Study: Manual Flights for Southern Muriqui Population Monitoring
3.3. Hypothetical Detection Scenarios Using Preprogrammed Flights
4. Discussion
4.1. Importance and Applications of RGB Drones in Arboreal Mammal Research
4.2. The Role of RGB Drones in Habitat Conservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López, J.J.; Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 2019, 3, 10. [Google Scholar] [CrossRef]
- de Melo, F.R. Drones for conservation: New techniques to monitor muriquis. Oryx 2021, 55, 171. [Google Scholar] [CrossRef]
- Lyons, M.B.; Brandis, K.J.; Murray, N.J.; Wilshire, J.H.; McCann, J.A.; Kingsford, R.T.; Callaghan, C.T. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 2019, 10, 1024–1035. [Google Scholar] [CrossRef]
- Schroeder, N.M.; Panebianco, A. Sociability strongly affects the behavioural responses of wild guanacos to drones. Sci. Rep. 2021, 11, 20901. [Google Scholar] [CrossRef]
- Povlsen, P.; Linder, A.C.; Larsen, H.L.; Durdevic, P.; Arroyo, D.O.; Bruhn, D.; Pertoldi, C.; Pagh, S. Using drones with thermal imaging to estimate population counts of European hare (Lepus europaeus) in denmark. Drones 2023, 7, 5. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Raja Segaran, R.; Reid, I.; Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef]
- Ivosevic, B.; Han, Y.-G.; Cho, Y.; Kwon, O. The use of conservation drones in ecology and wildlife research. J. Ecol. Environ. 2015, 38, 113–118. [Google Scholar] [CrossRef]
- Beaver, J.T.; Baldwin, R.W.; Messinger, M.; Newbolt, C.H.; Ditchkoff, S.S.; Silman, M.R. Evaluating the use of drones equipped with thermal sensors as an effective method for estimating wildlife. Wildl. Soc. Bull. 2020, 44, 434–443. [Google Scholar] [CrossRef]
- Lahoz-Monfort, J.J.; Magrath, M.J.L. A Comprehensive Overview of Technologies for Species and Habitat Monitoring and Conservation. BioScience 2021, 71, 1038–1062. [Google Scholar] [CrossRef] [PubMed]
- Varela-Jaramillo, A.; Rivas-Torres, G.; Guayasamin, J.M.; Steinfartz, S.; MacLeod, A. A pilot study to estimate the population size of endangered Galápagos marine iguanas using drones. Front. Zool. 2023, 20, 4. [Google Scholar] [CrossRef]
- McCarthy, E.D.; Martin, J.M.; Boer, M.M.; Welbergen, J.A. Ground-based counting methods underestimate true numbers of a threatened colonial mammal: An evaluation using drone-based thermal surveys as a reference. Wildl. Res. 2022, 50, 484–493. [Google Scholar] [CrossRef]
- Spaan, D.; Di Fiore, A.; Rangel-Rivera, C.E.; Hutschenreiter, A.; Wich, S.; Aureli, F. Detecting spider monkeys from the sky using a high-definition RGB camera: A rapid-assessment survey method? Biodivers. Conserv. 2022, 31, 479–496. [Google Scholar] [CrossRef]
- Zhang, H.; Turvey, S.T.; Pandey, S.P.; Song, X.; Sun, Z.; Wang, N. Commercial drones can provide accurate and effective monitoring of the world’s rarest primate. Remote Sens. Ecol. Conserv. 2023, 9, 775–786. [Google Scholar] [CrossRef]
- Wich, S.A.; Bonnin, N.; Hutschenreiter, A.; Piel, A.K.; Chitayat, A.; Stewart, F.A.; Pintea, L.; Kerby, J.T. Using drones to determine chimpanzee absences at the edge of their distribution in western Tanzania. Remote Sens. 2023, 15, 2019. [Google Scholar] [CrossRef]
- Pedrazzi, L.; Naik, H.; Sandbrook, C.; Lurgi, M.; Fürtbauer, I.; King, A.J. Advancing animal behaviour research using drone technology. Anim. Behav. 2025, 222, 123147. [Google Scholar] [CrossRef]
- Berezina, E.A.; Giljov, A.N.; Karenina, K.A. The Use of Drones for Studying the Behavior of Mammals. Biol. Bull. 2024, 51, 2960–2976. [Google Scholar] [CrossRef]
- Maeda, T.; Yamamoto, S. Drone Observation for the Quantitative Study of Complex Multilevel Societies. Animals 2023, 13, 1911. [Google Scholar] [CrossRef]
- Koger, B.; Deshpande, A.; Kerby, J.T.; Graving, J.M.; Costelloe, B.R.; Couzin, I.D. Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision. J. Anim. Ecol. 2023, 92, 1357–1371. [Google Scholar] [CrossRef]
- Foley, A.M.; Afridi, S.; Laporte-Devylder, L.; Maalouf, G.; Kline, J.M.; Penny, S.G.; Hlebowicz, K.; Cawthorne, D.; Pagh, U.; Lundquist, S. Impact of Drone Disturbances on Wildlife: A Review. Drones 2025, 9, 311. [Google Scholar] [CrossRef]
- Colombelli-Négrel, D.; Sach, I.Z.; Hough, I.; Hodgson, J.C.; Daniels, C.B.; Kleindorfer, S. Koalas showed limited behavioural response and no physiological response to drones. Appl. Anim. Behav. Sci. 2023, 264, 105963. [Google Scholar] [CrossRef]
- Kvile, K.Ø.; Gundersen, H.; Poulsen, R.N.; Sample, J.E.; Salberg, A.-B.; Ghareeb, M.E.; Buls, T.; Bekkby, T.; Hancke, K. Drone and ground-truth data collection, image annotation and machine learning: A protocol for coastal habitat mapping and classification. MethodsX. 2024, 13, 102935. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.; Rashman, M.; Wich, S.; Symons, A.; Theron, C.; Longmore, S. Optimizing observing strategies for monitoring animals using drone-mounted thermal infrared cameras. Int. J. Remote Sens. 2019, 40, 439–467. [Google Scholar] [CrossRef]
- Niwa, H. Assessment of habitat for disturbance-dependent species using light detection and ranging and multispectral sensors mounted on a UAV. Environ. Monit. Assess. 2022, 194, 605. [Google Scholar] [CrossRef]
- Hvala, A.; Rogers, R.M.; Alazab, M.; Campbell, H.A. Supplementing aerial drone surveys with biotelemetry data validates wildlife detection probabilities. Front. Conserv. Sci. 2023, 4, 1203736. [Google Scholar] [CrossRef]
- McCraine, D.; Samiappan, S.; Kohler, L.; Sullivan, T.; Will, D.J. Automated Hyperspectral Feature Selection and Classification of Wildlife Using Uncrewed Aerial Vehicles. Remote Sens. 2024, 16, 406. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 2016, 6, 22574. [Google Scholar] [CrossRef]
- Hodgson, A.; Kelly, N.; Peel, D. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study. PLoS ONE 2013, 8, e79556. [Google Scholar] [CrossRef]
- Cleguer, C.; Kelly, N.; Tyne, J.; Wieser, M.; Peel, D.; Hodgson, A. A Novel Method for Using Small Unoccupied Aerial Vehicles to Survey Wildlife Species and Model Their Density Distribution. Front. Mar. Sci. 2021, 8, 462. [Google Scholar] [CrossRef]
- Inman, V.L.; Kingsford, R.T.; Chase, M.J.; Leggett, K.E.A. Drone-based effective counting and ageing of hippopotamus (Hippopotamus amphibius) in the Okavango Delta in Botswana. PLoS ONE 2019, 14, e0219652. [Google Scholar] [CrossRef]
- Hua, A.; Martin, K.; Shen, Y.; Chen, N.; Mou, C.; Sterk, M.; Reinhard, B.; Reinhard, F.F.; Lee, S.; Alibhai, S.; et al. Protecting endangered megafauna through AI analysis of drone images in a low-connectivity setting: A case study from Namibia. PeerJ 2022, 10, e13779. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, L.; Drahota, J.; Woldt, W.; Varner, D.; Bishop, A.; LaGrange, T.; Neale, C.M.U.; Tang, Z. Combining Multi-View UAV Photogrammetry, Thermal Imaging, and Computer Vision Can Derive Cost-Effective Ecological Indicators for Habitat Assessment. Remote Sens. 2024, 16, 1081. [Google Scholar] [CrossRef]
- Semel, B.P.; Karpanty, S.M.; Vololonirina, F.F.; Rakotonanahary, A.N. Eyes in the sky: Assessing the feasibility of low-cost, ready-to-use unmanned aerial vehicles to monitor primate populations directly. Folia Primatol. 2020, 91, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Gang, H.E.; Yang, H.; Pan, R.; Sun, Y.; Zheng, P.; Wang, J.; Jin, X.; Zhang, J.; Baoguo, L.I.; Guo, S. Using unmanned aerial vehicles with thermal-image acquisition cameras for animal surveys: A case study on the Sichuan snub-nosed monkey in the Qinling Mountains. Integr. Zool. 2020, 15, 79–86. [Google Scholar] [CrossRef]
- Psiroukis, V.; Malounas, I.; Mylonas, N.; Grivakis, K.-E.; Fountas, S.; Hadjigeorgiou, I. Monitoring of free-range rabbits using aerial thermal imaging. Smart Agric. Technol. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Dahlen, B.; Traeholt, C. Successful aerial survey using thermal camera to detect wild orangutans in a fragmented landscape. J. Indones. Nat. Hist. 2018, 6, 12–23. [Google Scholar]
- Kays, R.; Sheppard, J.; Mclean, K.; Welch, C.; Paunescu, C.; Wang, V.; Kravit, G.; Crofoot, M. Hot monkey, cold reality: Surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. Int. J. Remote Sens. 2019, 40, 407–419. [Google Scholar] [CrossRef]
- Vinson, S.G.; Johnson, A.P.; Mikac, K.M. Thermal cameras as a survey method for Australian arboreal mammals: A focus on the greater glider. Aust. Mammal. 2020, 42, 367–374. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Turvey, S.T.; Sun, Z.; Tan, Z.; Yang, Q.; Long, W.; Wu, X.; Yang, D. Thermal infrared imaging from drones can detect individuals and nocturnal behavior of the world’s rarest primate. Glob. Ecol. Conserv. 2020, 23, e01101. [Google Scholar] [CrossRef]
- Backman, K.; Wood, J.; Brandimarti, M.; Beranek, C.T.; Roff, A. Human inspired deep learning to locate and classify terrestrial and arboreal animals in thermal drone surveys. Methods Ecol. Evol. 2025, 16, 1239–1254. [Google Scholar] [CrossRef]
- Gazagne, E.; Gray, R.J.; Ratajszczak, R.; Brotcorne, F.; Hambuckers, A. Unmanned aerial vehicles (UAVs) with thermal infrared (TIR) sensors are effective for monitoring and counting threatened Vietnamese primates. Primates 2023, 64, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Mirka, B.; Stow, D.A.; Paulus, G.; Loerch, A.C.; Coulter, L.L.; An, L.; Lewison, R.L.; Pflüger, L.S. Evaluation of thermal infrared imaging from uninhabited aerial vehicles for arboreal wildlife surveillance. Environ. Monit. Assess. 2022, 194, 512. [Google Scholar] [CrossRef]
- Wich, S.; Dellatore, D.; Houghton, M.; Ardi, R.; Koh, L.P. A preliminary assessment of using conservation drones for sumatran orang-utan (Pongo abelii) distribution and density. J. Unmanned Veh. Syst. 2015, 4, 45–52. [Google Scholar] [CrossRef]
- van Andel, A.C.; Wich, S.A.; Boesch, C.; Koh, L.P.; Robbins, M.M.; Kelly, J.; Kuehl, H.S. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle. Am. J. Primatol. 2015, 77, 1122–1134. [Google Scholar] [CrossRef]
- Rahman, D.A.; Putro, H.R.; Mufawwaz, T.A.; Rinaldi, D.; Yudiarti, Y.; Prabowo, E.D.; Arief, H.; Sihite, J.; Priantara, F.R.N. Developing a new method using thermal drones for population surveys of the world’s rarest great ape species, Pongo tapanuliensis. Glob. Ecol. Conserv. 2025, 58, e03463. [Google Scholar] [CrossRef]
- Aureli, F.; Schaffner, C.M.; Boesch, C.; Bearder, S.K.; Call, J.; Chapman, C.A.; Connor, R.; Di Fiore, A.; Dunbar, R.I.M.; Peter Henzi, S.; et al. Fission-fusion dynamics new research frameworks. Curr. Anthropol. 2008, 49, 627–654. [Google Scholar] [CrossRef]
- Spaan, D.; Ramos-Fernández, G.; Schaffner, C.M.; Pinacho-Guendulain, B.; Aureli, F. How survey design affects monkey counts: A case study on individually recognized spider monkeys (Ateles geoffroyi). Folia Primatol. 2018, 88, 409–420. [Google Scholar] [CrossRef]
- Cortes-Ortíz, L.; Solano-Rojas, D.; Rosales-Meda, M.; Williams-Guillén, K.; Méndez-Carvajal, P.G.; Marsh, L.K.; Canales-Espinosa, D.; Mittermeier, R.A. Ateles geoffroyi (Geoffroy’s Spider Monkey), The IUCN Red List of Threatened Species 2021. Available online: https://www.iucnredlist.org/species/2279/191688782 (accessed on 1 June 2025).
- Calixto-Pérez, E.; Alarcón-Guerrero, J.; Ramos-Fernández, G.; Dias, P.A.D.; Rangel-Negrín, A.; Améndola-Pimenta, M.; Domingo, C.; Arroyo-Rodríguez, V.; Pozo-Montuy, G.; Pinacho-Guendulain, B.; et al. Integrating expert knowledge and ecological niche models to estimate Mexican primates’ distribution. Primates 2018, 59, 451–467. [Google Scholar] [CrossRef]
- Ramos-Fernández, G.; Ayala-Orozco, B. Population Size and Habitat use of Spider Monkeys at Punta Laguna, Mexico. In Primates in Fragments; Springer: New York, NY, USA, 2003; pp. 191–209. [Google Scholar]
- Pietrangeli, E.; Saldaña-Sánchez, A.A.; Spaan, D.; Aureli, F. Let’s not use it! A dynamic no-use zone between the home ranges of two spider monkey groups. Primates 2024, 65, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Brunton, E.A.; Leon, J.X.; Burnett, S.E. Evaluating the efficacy and optimal deployment of thermal infrared and true-colour imaging hen using drones for monitoring kangaroos. Drones 2020, 4, 20. [Google Scholar] [CrossRef]
- Wallace, R.B. Diurnal activity budgets of black spider monkey, Ateles chamek in southern Amazonian tropical forest. Neotrop. Primates 2001, 9, 101–107. [Google Scholar] [CrossRef]
- Pinel-Ramos, E.J.; Aureli, F.; Wich, S.; Petersen, M.F.; Dias, P.A.D.; Spaan, D. The Behavioral Responses of Geoffroy’s Spider Monkeys to Drone Flights. Drones 2024, 8, 500. [Google Scholar] [CrossRef]
- Jerusalinsky, L.; Talebi, M.; Melo, F. Plano de Ação Nacional para a Conservação dos Muriquis-Muriqui-do-norte (Brachyteles hypoxanthus) e Muriqui-do-sul (Brachyteles arachnoides); Série Espécies Ameaçadas no 11; ICMBio: Brasília, Brazil, 2011. [Google Scholar]
- Coles, R.C.; Lee, P.C.; Talebi, M. Fission–Fusion Dynamics in Southern Muriquis (Brachyteles arachnoides) in Continuous Brazilian Atlantic Forest. Int. J. Primatol. 2012, 33, 93–114. [Google Scholar] [CrossRef]
- Talebi, M.; Jerusalinsky, L.; Martins, M.; Mittermeier, R.A.; Ingberman, B.; Ferraz, D.S.; de Melo, F.R.; Boubli, J.P. Brachyteles arachnoides (Amended Version of 2019 Assessment). Available online: https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T2993A191692658.en (accessed on 1 June 2025).
- Strier, K.B.; Possamai, C.B.; Tabacow, F.P.; Pissinatti, A.; Lanna, A.M.; Rodrigues de Melo, F.; Moreira, L.; Talebi, M.; Breves, P.; Mendes, S.L.; et al. Demographic monitoring of wild muriqui populations: Criteria for defining priority areas and monitoring intensity. PLoS ONE 2017, 12, e0188922. [Google Scholar] [CrossRef] [PubMed]
- Pompeu, J.; de Oliveira Portella, R. Genetic viability and habitat suitability of the critically endangered southern muriqui (Brachyteles arachnoides) in the Atlantic Forest’s fragmented landscapes under land use and climate change scenarios. Clim. Change Ecol. 2023, 5, 100065. [Google Scholar] [CrossRef]
- Talebi, M.; Pedro, S. Conservation research on the southern muriqui (Brachyteles arachnoides) in Sao Paulo state, Brazil. Neotrop. Primates 2005, 13, 53–60. [Google Scholar] [CrossRef]
- Sant’Anna Neto, J.L. Decalago da climatologia do sudeste Brasileiro. Rev. Bras. Climatol. 2005, 1, 43–60. [Google Scholar] [CrossRef]
- INMET: Normais Climatológicas Institutos Nacional de Meteorologia. Available online: https://portal.inmet.gov.br/dadoshistoricos (accessed on 1 March 2025).
- Talebi, M.G.; Lee, P.C. Activity Patterns of Brachyteles arachnoides in the Largest Remaining Fragment of Brazilian Atlantic Forest. Int. J. Primatol. 2010, 31, 571–583. [Google Scholar] [CrossRef]
- Ramos-Fernandez, G.; Smith Aguilar, S.E.; Schaffner, C.M.; Vick, L.G.; Aureli, F. Site Fidelity in Space Use by Spider Monkeys (Ateles geoffroyi) in the Yucatan Peninsula, Mexico. PLoS ONE 2013, 8, e62813. [Google Scholar] [CrossRef] [PubMed]
- Chaves, Ó.M.; Stoner, K.E.; Arroyo-Rodríguez, V. Seasonal Differences in Activity Patterns of Geoffroyís Spider Monkeys (Ateles geoffroyi) Living in Continuous and Fragmented Forests in Southern Mexico. Int. J. Primatol. 2011, 32, 960–973. [Google Scholar] [CrossRef]
- Fedigan, L.M.; Fedigan, L.; Chapman, C.; Glander, K.E. Spider Monkey Home Ranges: A Comparison of Radio Telemetry and Direct Observation. Am. J. Primatol. 1988, 16, 19–29. [Google Scholar] [CrossRef]
- Rath, T.B.; Estrada, A.; Pozo, C.; Calmé, S. Reconocimiento demográfico de Alouatta pigra y Ateles geoffroyi; en la reserva El Tormento, Campeche, México. Neotrop. Primates 2003, 11, 163–167. [Google Scholar] [CrossRef]
- Estrada, A.; Luecke, L.; Van Belle, S.; Barrueta, E.; Meda, M.R. Survey of black howler (Alouatta pigra) and spider (Ateles geoffroyi) monkeys in the Mayan sites of Calakmul and Yaxchilán, Mexico and Tikal, Guatemala. Primates 2004, 45, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Muñóz, D.; Estrada, A.; del Valle, Y.G. Survey and Conservation of a Relict Population of Spider Monkeys (Ateles Geoffroyi) in the Sumidero Canyon, Mexico. Trop. Conserv. Sci. 2008, 1, 151–162. [Google Scholar] [CrossRef]
- Delaney, D.G.; Leung, B. An empirical probability model of detecting species at low densities. Ecol. Appl. 2010, 20, 1162–1172. [Google Scholar] [CrossRef]
- McMahon, M.C.; Ditmer, M.A.; Isaac, E.J.; Moore, S.A.; Forester, J.D. Evaluating Unmanned Aerial Systems for the Detection and Monitoring of Moose in Northeastern Minnesota. Wildl. Soc. Bull. 2021, 45, 312–324. [Google Scholar] [CrossRef]
- Santos, P.M.; Kaizer, M.D.C.; Moreira, D.O.; De Melo, F.R.; Mendes, S.L. Every flight is a surprise: First records of the southern maned three-toed sloth (Bradypus crinitus: Bradypodidae) through drones. Mammalia 2023, 87, 223–227. [Google Scholar] [CrossRef]
- Guimarães, C.R. There’s something out there waiting for us: Drones with thermal cameras as revolutionary tools in population monitoring. Master’s Thesis, Federal University of Vicosa, Vicosa, Brazil, 2023. [Google Scholar]
- van Berkel, T.; Dahms, T.; Mbende, M.; Loota, J.B.; Jocqué, M. Detection of bonobos (Pan Paniscus) in tropical rainforest canopies using drone-based thermal imaging: A first step towards accurately estimating Population Sizes? Int. J. Primatol. 2023, 44, 240–244. [Google Scholar] [CrossRef]
- Gazagne, E.; Goldblatt, C.; Trần Nguyễn, V.; Brotcorne, F.; Hambuckers, A. Utilizing Thermal Imaging Drones to Investigate Sleeping Site Selection in an Arboreal Primate. Curr. Zool. 2025, zoae082. [Google Scholar] [CrossRef]
- Witt, R.R.; Beranek, C.T.; Howell, L.G.; Ryan, S.A.; Clulow, J.; Jordan, N.R.; Denholm, B.; Roff, A. Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLoS ONE 2020, 15, e0242204. [Google Scholar] [CrossRef]
- Kline, J.; Zhong, A.; Irizarry, K.; Stewart, C.V.; Stewart, C.; Rubenstein, D.I.; Berger-Wolf, T. WildWing: An open-source, autonomous and affordable UAS for animal behaviour video monitoring. Methods Ecol. Evol. 2025. [Google Scholar] [CrossRef]
- Headland, T.; Ostendorf, B.; Taggart, D. The behavioral responses of a nocturnal burrowing marsupial (Lasiorhinus latifrons) to drone flight. Ecol. Evol. 2021, 11, 12173–12181. [Google Scholar] [CrossRef]
- Landeo-Yauri, S.S.; Ramos, E.A.; Castelblanco-Martínez, D.N.; Niño-Torres, C.A.; Searle, L. Using small drones to photo-identify Antillean manatees: A novel method for monitoring an endangered marine mammal in the Caribbean Sea. Endanger. Species Res. 2020, 41, 79–90. [Google Scholar] [CrossRef]
- Ryan, K.P.; Ferguson, S.H.; Koski, W.R.; Young, B.G.; Roth, J.D.; Watt, C.A. Use of drones for the creation and development of a photographic identification catalogue for an endangered whale population. Arct. Sci. 2022, 8, 1191–1201. [Google Scholar] [CrossRef]
- Fust, P.; Loos, J. Development perspectives for the application of autonomous, unmanned aerial systems (UASs) in wildlife conservation. Biol. Conserv. 2020, 241, 108380. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, H.; Lee, K.; Elliott, S.; Tiansawat, P. Use of Drone RGB Imagery to Quantify Indicator Variables of Tropical-Forest-Ecosystem Degradation and Restoration. Forests 2023, 14, 586. [Google Scholar] [CrossRef]
- Miraki, M.; Sohrabi, H. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests. Environ. Monit. Assess. 2022, 194, 45. [Google Scholar] [CrossRef]
- Valluvan, A.B.; Raj, R.; Pingale, R.; Jagarlapudi, A. Canopy height estimation using drone-based RGB images. Smart Agric. Technol. 2023, 4, 100145. [Google Scholar] [CrossRef]
- Alexander, C.; Korstjens, A.H.; Hankinson, E.; Usher, G.; Harrison, N.; Nowak, M.G.; Abdullah, A.; Wich, S.A.; Hill, R.A. Locating emergent trees in a tropical rainforest using data from an Unmanned Aerial Vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 86–90. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Zhang, L.; Li, P.; Gong, Q.; Zuo, A.; Hu, K.; Jiang, X.; Lu, N.; Guan, Z. sUAS-Based High-Resolution Mapping for the Habitat Quality Assessment of the Endangered Hoolock tianxing Gibbon. Forests 2025, 16, 285. [Google Scholar] [CrossRef]
- Kirchgeorg, S.; Chang, J.J.M.; Ip, Y.C.A.; Jucker, M.; Geckeler, C.; Lüthi, M.; van der Loo, E.; Mächler, E.; Franco-Sierra, N.D.; Herrera, M.A.G.; et al. eProbe: Sampling of Environmental DNA within Tree Canopies with Drones. Environ. Sci. Technol. 2024, 58, 16410–16420. [Google Scholar] [CrossRef] [PubMed]
- Aucone, E.; Kirchgeorg, S.; Valentini, A.; Pellissier, L.; Deiner, K.; Mintchev, S. Drone-assisted collection of environmental DNA from tree branches for biodiversity monitoring. Sci. Robot. 2023, 8, eadd5762. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, M.J.M.; dos Reis, I.D.; Barros, J.R.A.; Lopes, I.; da Costa, M.G.; Ribeiro, D.P.; Carvalho, G.C.; da Silva, A.S.; Oliveira Alves, C.V. Identification of Vegetation Areas Affected by Wildfires Using RGB Images Obtained by UAV: A Case Study in the Brazilian Cerrado. Geomatics 2025, 5, 13. [Google Scholar] [CrossRef]
- Hossain, F.M.A.; Zhang, Y.M.; Tonima, M.A. Forest fire flame and smoke detection from uav-captured images using fire-specific color features and multi-color space local binary pattern. J. Unmanned Veh. Syst. 2020, 8, 285–309. [Google Scholar] [CrossRef]
- Chen, X.; Hopkins, B.; Wang, H.; O’Neill, L.; Afghah, F.; Razi, A.; Fulé, P.; Coen, J.; Rowell, E.; Watts, A. Wildland Fire Detection and Monitoring Using a Drone-Collected RGB/IR Image Dataset. IEEE Access. 2022, 10, 121301–121317. [Google Scholar] [CrossRef]
- Xiao-rui, T.; Mcrae, D.J.; Li-fu, S.; Ming-yu, W.; Hong, L. Satellite remote-sensing technologies used in forest fire management. J. For. Res. 2005, 16, 73–78. [Google Scholar] [CrossRef]
- González, N.C.; Kröger, M. The adoption of earth-observation technologies for deforestation monitoring by Indigenous people: Evidence from the Amazon. Globalizations 2023, 20, 415–431. [Google Scholar] [CrossRef]
- Doull, K.E.; Chalmers, C.; Fergus, P.; Longmore, S.; Piel, A.K.; Wich, S.A. An evaluation of the factors affecting ‘poacher’ detection with drones and the efficacy of machine-learning for detection. Sensors 2021, 21, 4074. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinel-Ramos, E.J.; Aureli, F.; Wich, S.; Rodrigues de Melo, F.; Rezende, C.; Brandão, F.; de Melo, F.C.S.A.; Spaan, D. An Assessment of the Effectiveness of RGB-Camera Drones to Monitor Arboreal Mammals in Tropical Forests. Drones 2025, 9, 622. https://doi.org/10.3390/drones9090622
Pinel-Ramos EJ, Aureli F, Wich S, Rodrigues de Melo F, Rezende C, Brandão F, de Melo FCSA, Spaan D. An Assessment of the Effectiveness of RGB-Camera Drones to Monitor Arboreal Mammals in Tropical Forests. Drones. 2025; 9(9):622. https://doi.org/10.3390/drones9090622
Chicago/Turabian StylePinel-Ramos, Eduardo José, Filippo Aureli, Serge Wich, Fabiano Rodrigues de Melo, Camila Rezende, Felipe Brandão, Fabiana C. S. Alves de Melo, and Denise Spaan. 2025. "An Assessment of the Effectiveness of RGB-Camera Drones to Monitor Arboreal Mammals in Tropical Forests" Drones 9, no. 9: 622. https://doi.org/10.3390/drones9090622
APA StylePinel-Ramos, E. J., Aureli, F., Wich, S., Rodrigues de Melo, F., Rezende, C., Brandão, F., de Melo, F. C. S. A., & Spaan, D. (2025). An Assessment of the Effectiveness of RGB-Camera Drones to Monitor Arboreal Mammals in Tropical Forests. Drones, 9(9), 622. https://doi.org/10.3390/drones9090622