UAV Airborne Network Intrusion Detection Method Based on Improved Stratified Sampling and Ensemble Learning
Abstract
1. Introduction
2. ISSEL Model Framework
2.1. Overall Architecture
2.2. Improved Stratified Sampling
2.3. Base Classifiers
2.4. Adaptive Weighted Fusion Strategy
3. Data Source and Evaluation Metrics
3.1. Data Source and Preprocessing
3.2. Evaluation Metrics
4. Experimental Verification
4.1. Experimental Environment
4.2. Model Hyperparameter Experiment
- (1)
- Determining the Number of Clusters k
- (2)
- Base Classifier Hyperparameter Tuning
4.3. Comparison of Base Classifiers and the Proposed Model
4.4. Component-Wise Impact Analysis
4.5. Comparison of Sampling Methods
4.6. Comparison Between the Proposed Method and the Latest Methods
4.7. Comparison of Latency Efficiency of the ISSEL and Lightweight Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned aerial vehicle |
IDS | Intrusion detection system |
ISSEL | Improved stratified sampling and ensemble learning |
SMOTE | Synthetic Minority Oversampling Technique |
ADASYN | Adaptive Synthetic Sampling |
RUS | Random undersampling |
RF | Random Forest |
GBDT | Gradient Boosting Decision Tree |
MI TM | Man-in-the-Middle |
SSE | Sum of the squared errors |
MIL-STD-1553B | Military Standard 1553B |
DT | Decision tree |
ET | Extra trees |
XGBoost | eXtreme gradient boosting |
TP | True positive |
FP | False positive |
TN | True negative |
FN | False negative |
IPS | Intrusion Prevention System |
SDN | Software-Defined Networking |
References
- Zhao, C. Research on Intrusion Detection of UAV Airborne CAN Bus Network Based on GAN Model. Master’s Thesis, Xidian University, Xi’an, China, 2024. [Google Scholar]
- Jie, Y. Research on the Key Technologies of the UAV’s Airborne Network Unified Bus. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2018. [Google Scholar]
- Ceviz, O.; Sadioglu, P.; Sen, S.; Vassilakis, V.G. A novel federated learning-based IDS for enhancing UAVs privacy and security Author links open overlay panel. Internet Things 2025, 5, 101592. [Google Scholar] [CrossRef]
- Stan, O.; Elovici, Y.; Shabtai, A.; Shugol, G.; Tikochinski, R.; Kur, S. Protecting military avionics platforms from attacks on mil-std-1553 communication bus. arXiv 2017, arXiv:1707.05032. [Google Scholar] [CrossRef]
- Losier, B. Design of a Time-Based Intrusion Detection Algorithm for the Mil-Std-1553. Master’s Thesis, Royal Military College of Canada, Kingston, ON, Canada, 2019. [Google Scholar]
- Zeng, W.; Zhang, C.; Liang, X.; Xia, J.; Lin, Y.; Lin, Y. Intrusion detection-embedded chaotic encryption via hybrid modulation for data center interconnects. Opt. Lett. 2025, 50, 4450–4453. [Google Scholar] [CrossRef]
- Genereux, S.J.; Lai, A.K.; Fowles, C.O.; Roberge, V.R.; Vigeant, G.P.; Paquet, J.R. Maidens: Mil-std-1553 anomaly-based intrusion detection system using time-based histogram comparison. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 276–284. [Google Scholar] [CrossRef]
- Onodueze, F.; Josyula, D. Anomaly Detection on MIL-STD-1553 Dataset using Machine Learning Algorithms. In Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021; pp. 592–598. [Google Scholar]
- Yahalom, R.; Barishev, D.; Steren, A.; Nameri, Y.; Roytman, M.; Porgador, A.; Elovici, Y. Datasets of RT spoofing attacks on MIL-STD-1553 communication traffic. Data Brief 2019, 23, 103863. [Google Scholar] [CrossRef]
- Qiu, L.; Song, Y. An intrusion detection model using smote and ensemble learning. In Proceedings of the Third International Seminar on Artificial Intelligence, Networking, and Information Technology (AINIT 2022), Shanghai, China, 23–25 September 2022; SPIE: Washington, CA, USA, 2023; Volume 12587, pp. 127–130. [Google Scholar]
- Li, Y.; Xu, W.; Li, W.; Li, A.; Liu, Z. Research on hybrid intrusion detection method based on the ADASYN and ID3 algorithms. Math. Biosci. Eng. 2022, 19, 2030–2042. [Google Scholar] [CrossRef]
- Leevy, J.L.; Hancock, J.; Khoshgoftaar, T.M.; Seliya, N. Iot reconnaissance attack classification with random undersampling and ensemble feature selection. In Proceedings of the 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC), Atlanta, GA, USA, 13–15 December 2021; pp. 41–49. [Google Scholar]
- Sun, Y.; Que, H.; Cai, Q.; Zhao, J.; Li, J.; Kong, Z.; Wang, S. Borderline smote algorithm and feature selection-based network anomalies detection strategy. Energies 2022, 15, 4751. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Ding, L.; Huang, Z.; Sui, H.; Wang, S.; Song, Y. Selective ensemble method for anomaly detection based on parallel learning. Sci. Rep. 2024, 14, 1420. [Google Scholar] [CrossRef]
- Shanmugam, V.; Razavi-Far, R.; Hallaji, E. Addressing Class Imbalance in Intrusion Detection: A Comprehensive Evaluation of Machine Learning Approaches. Electronics 2025, 14, 69. [Google Scholar] [CrossRef]
- Rai, H.M.; Yoo, J.; Agarwal, S. The Improved Network Intrusion Detection Techniques Using the Feature Engineering Approach with Boosting Classifiers. Mathematics 2024, 12, 3909. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, LO, USA, 7–9 January 2007. [Google Scholar]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, CA, USA, 12–17 August 2016; pp. 785–794. [Google Scholar]
- Wrana, M.M.; Elsayed, M.; Lounis, K.; Mansour, Z.; Ding, S.; Zulkernine, M. OD1NF1ST: True Skip Intrusion Detection and Avionics Network Cyber-attack Simulation. ACM Trans. Cyber-Phys. Syst. 2022, 6, 27. [Google Scholar] [CrossRef]
- Lin, L.; Shangguan, R.; Ge, H.; Liu, Y.; Zhou, Y.; Zhou, Y. Mutual Identity Authentication Based on Dynamic Identity and Hybrid Encryption for UAV–GCS Communications. Drones 2025, 6, 422. [Google Scholar] [CrossRef]
- Rong, G.; Li, K.; Su, Y.; Tong, Z.; Liu, X.; Zhang, J.; Zhang, Y.; Li, T. Comparison of tree-structured parzen estimator optimization in three typical neural network models for landslide susceptibility assessment. Remote Sens. 2021, 13, 4694. [Google Scholar] [CrossRef]
- de Lima Nogueira, S.C.; Och, S.H.; Moura, L.M.; Domingues, E.; dos Santos Coelho, L.; Mariani, V.C. Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering. Energy 2023, 280, 128066. [Google Scholar] [CrossRef]
- Nerlikar, V.; Mesnil, O.; Miorelli, R.; d’Almeida, O. Damage detection with ultrasonic guided waves using machine learning and aggregated baselines. Struct. Health Monit. 2023, 23, 443–462. [Google Scholar] [CrossRef]
- Cui, J.; Yang, B. Review of Bayesian Optimization Methods and Applications. J. Softw. 2018, 29, 3068–3090. [Google Scholar] [CrossRef]
- He, D.; Liu, X.; Zheng, J.; Chan, S.; Zhu, S.; Min, W.; Guizani, N. A lightweight and intelligent intrusion detection system for integrated electronic systems. IEEE Netw. 2020, 34, 173–179. [Google Scholar] [CrossRef]
- Lu, Y.; Li, D.; Li, D.; Li, X.; Gao, Q.; Yu, X. A Lightweight Insulator Defect Detection Model Based on Drone Images. Drones 2024, 8, 431. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Q.; Lei, G.; Wang, L.; Guo, C. Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture. Drones 2025, 9, 551. [Google Scholar] [CrossRef]
- Le, T.; Shin, Y.; Kim, M.; Kim, H. Towards unbalanced multiclass intrusion detection with hybrid sampling methods and ensemble classification. Appl. Soft Comput. 2024, 157, 111517. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, W.; Zhou, L. ADASYN-Random Forest Based Intrusion Detection Model. arXiv 2021, arXiv:2105.04301. [Google Scholar] [CrossRef]
- Du, H.; Zhang, Y.; Ke, G. A selective ensemble learning algorithm for imbalanced dataset. J. Ambient Intell. Humaniz. Comput. 2021. [Google Scholar] [CrossRef]
- Zoghi, Z.; Serpen, G. Ensemble Classifier Design Tuned to Dataset Characteristics for Network Intrusion Detection. arXiv 2022, arXiv:2205.06177. [Google Scholar] [CrossRef]
- Soni, S.; Remli, M.; Daud, K.; Amien, J. Improving imbalanced class intrusion detection in IoT with ensemble learning and ADASYN-MLP approach. Indonesian J. Electr. Eng. Comput. Sci. 2024, 36, 1209–1217. [Google Scholar] [CrossRef]
Label | Attack Type | Quantity | Proportion |
---|---|---|---|
0 | Benign | 33,271 | 83.19% |
1 | Random Word Generation (Bus) | 4243 | 10.61% |
2 | Desynchronization | 764 | 1.91% |
3 | Random Word Generation (RT) | 63 | 0.16% |
4 | Data Word Corruption | 251 | 0.63% |
5 | Status Word Manipulation (TR) | 35 | 0.09% |
6 | TX Shutdown | 845 | 2.11% |
7 | Status Word Manipulation (REC) | 227 | 0.57% |
8 | Data Trashing | 53 | 0.13% |
9 | Man-in-the-Middle | 228 | 0.57% |
10 | Command Invalidation | 15 | 0.04% |
k | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
Silhouette Score | 0.33 | 0.33 | 0.39 | 0.30 | 0.26 | 0.25 | 0.23 | 0.23 | 0.25 |
Classifier | Hyperparameter | Search Space | Optimal Value |
---|---|---|---|
DT | criterion max_depth min_samples_leaf min_samples_split | {gini, entropy} {5,6,……,50} {1,2,……,11} {2,3,……,11} | gini 30 1 2 |
ET | criterion max_depth min_samples_leaf min_samples_split n_estimators | {gini, entropy} {5,6,……,50} {1,2,……,11} {2,3,……,11} {10,11,……,200} | entropy 33 1 2 50 |
RF | criterion max_depth min_samples_leaf min_samples_split n_estimators | {gini, entropy} {5,6,……,50} {1,2,……,11} {2,3,……,11} {10,11,……,200} | gini 38 1 2 194 |
GBDT | learning_rate max_depth n_estimators | {0.01,…,0.9} {4,5,……,100} {10,15,……,100} | 0.24 24 129 |
XGBoost | learning_rate max_depth n_estimators | {0.01,…,0.9} {4,5,……,100} {10,15,……,100} | 1 2 3 |
Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | |
---|---|---|---|---|
DT | 97.45 | 98.31 | 86.32 | 91.92 |
ET | 98.80 | 99.68 | 93.14 | 96.31 |
RF | 99.25 | 99.31 | 96.21 | 97.73 |
GBDT | 96.70 | 98.30 | 81.78 | 89.29 |
XGBoost | 99.19 | 99.00 | 96.13 | 97.55 |
ISSEL | 99.42 | 98.94 | 97.62 | 98.28 |
Model | Strengths | Performance Impact | |
---|---|---|---|
KMeans++ | Ensures representation of multimodal distributions | +15% mAP | |
Base Classifiers | DT | Interpretable, fast inference | Baseline diversity (+5% recall) |
RF | Robustness to noise via bagging | Major variance reduction (+8% mAP) | |
GBDT | Can handle nonlinear interactions | Highest accuracy gain (+12% mAP) | |
XGBoost | Regularization, scalability | Prevents overfitting (+14% mAP) | |
Extra Trees | Randomized splits for diversity | Improves edge-case detection (+8% mAP) | |
Inverse F1 Score Weighting Strategy | Suppresses the overconfidence of high F1 models and enhances the ensemble robustness | +16.2% mAP |
Random Sampling Ensemble (%) | Stratified Sampling Ensemble (%) | SMOTE (%) | ADASYN (%) | ISSEL (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Label | P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 |
0 | 99.8 | 99.7 | 99.8 | 99.6 | 99.6 | 99.6 | 99.7 | 99.4 | 99.6 | 99.6 | 99.6 | 99.5 | 99.6 | 99.7 | 99.7 |
1 | 89.2 | 97.7 | 93.2 | 90.3 | 98.8 | 94.4 | 90.2 | 98.3 | 92.8 | 88.6 | 97.7 | 92.6 | 90.3 | 98.8 | 94.4 |
2 | 67.2 | 34.1 | 45.2 | 86.3 | 45.1 | 59.2 | 74.4 | 44.1 | 55.2 | 80.0 | 47.1 | 55.0 | 86.4 | 45.8 | 59.8 |
3 | 62.5 | 62.5 | 62.5 | 100. | 69.2 | 81.8 | 96.1 | 62.6 | 65.3 | 70.0 | 70.4 | 66.4 | 100. | 61.5 | 76.2 |
4 | 91.7 | 97.1 | 94.3 | 84.6 | 88.0 | 86.3 | 81.7 | 86.0 | 77.6 | 79.8 | 90.4 | 89.2 | 83.6 | 92.0 | 87.6 |
5 | 66.7 | 50.0 | 57.1 | 75.0 | 42.9 | 54.6 | 76.4 | 30.8 | 53.7 | 78.9 | 41.4 | 53.5 | 100. | 42.9 | 60.0 |
6 | 95.2 | 97.1 | 96.1 | 92.5 | 95.3 | 93.9 | 94.1 | 91.7 | 93.3 | 90.6 | 89.8 | 92.9 | 95.3 | 95.3 | 95.3 |
7 | 95.1 | 100. | 97.5 | 100. | 100. | 100. | 93.8 | 99.2 | 96.8 | 97.2 | 95.8 | 99.4 | 97.8 | 100. | 98.9 |
8 | 66.7 | 28.6 | 40.0 | 80.0 | 36.4 | 50.0 | 76.7 | 38.6 | 48.6 | 58.4 | 29.6 | 66.7 | 28.6 | 40.0 | 70.6 |
9 | 97.4 | 90.2 | 93.7 | 97.6 | 87.0 | 92.0 | 96.1 | 92.5 | 95.3 | 96.2 | 89.5 | 99.6 | 97.6 | 87.0 | 92.0 |
10 | 0.0 | 0.0 | 0.0 | 50.0 | 33.3 | 40.0 | 70.5 | 53.3 | 60.4 | 63.3 | 70.6 | 71.1 | 100. | 66.7 | 80.0 |
Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | |
---|---|---|---|---|
Stan [4] | - | 98.96 | 37.79 | 54.69 |
Genereux [7] | - | 98.37 | 51.32 | 67.07 |
He [29] | - | 99.58 | 70.89 | 79.25 |
Michael [21] | 94.76 | 95.30 | 75.79 | 84.43 |
Qiu [10] | 98.39 | 95.92 | 94.42 | 95.17 |
Li [11] | 99.09 | 96.42 | 98.22 | 97.31 |
Leevy [12] | 97.59 | 88.92 | 97.84 | 93.17 |
Sun [13] | 98.81 | Le95.03 | 98.07 | 96.52 |
ISSEL | 99.42 | 98.94 | 97.62 | 98.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Ge, H.; Zhou, Y.; Shangguan, R. UAV Airborne Network Intrusion Detection Method Based on Improved Stratified Sampling and Ensemble Learning. Drones 2025, 9, 604. https://doi.org/10.3390/drones9090604
Lin L, Ge H, Zhou Y, Shangguan R. UAV Airborne Network Intrusion Detection Method Based on Improved Stratified Sampling and Ensemble Learning. Drones. 2025; 9(9):604. https://doi.org/10.3390/drones9090604
Chicago/Turabian StyleLin, Lin, Hongjuan Ge, Yuefei Zhou, and Runzong Shangguan. 2025. "UAV Airborne Network Intrusion Detection Method Based on Improved Stratified Sampling and Ensemble Learning" Drones 9, no. 9: 604. https://doi.org/10.3390/drones9090604
APA StyleLin, L., Ge, H., Zhou, Y., & Shangguan, R. (2025). UAV Airborne Network Intrusion Detection Method Based on Improved Stratified Sampling and Ensemble Learning. Drones, 9(9), 604. https://doi.org/10.3390/drones9090604