Evaluation of Temporal Trends in Forest Health Status Using Precise Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Climate
2.3. Drones
2.4. Data Collection and Processing
2.5. Deep Learning
2.6. Deep Learning Analysis
- Accuracy
- Precision (positive predictive value)
- Recall (true positive rate)
- F1-score
- Intersection over union (IoU)
3. Results
3.1. Expert Interpretation of Forest Data
3.2. Deep Learning Networks to Automatically Predict Forest Health
3.3. Performance of Separated Categories
3.4. Performance of Aggregated Categories
3.5. Comparison of Aggregated and Separated Categories
3.6. Data Distribution and Challenges
4. Discussion
4.1. Discussion—Observed Spatial and Temporal Tree Health Patterns
4.2. Discussion—Performance of the YOLO Deep Learning Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DL | Deep learning |
px | Pixel |
Yolo | You Only Look Once |
TP | True positive |
TN | True negative |
FP | False positive |
FN | False negative |
GCPs | Ground control points |
References
- Guégan, J.F.; Thoisy, B.; Gómez-Gallego, M.; Jactel, H. World forests, global change, and emerging pests and pathogens. Curr. Opin. Environ. Sustain. 2023, 61, 101266. [Google Scholar] [CrossRef]
- Jactel, H.; Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 2019, 35, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Naseer, A.; Mogilicherla, K.; Trubin, A.; Zabihi, K.; Roy, A.; Jakuš, R.; Erbilgin, N. Understanding bark beetle outbreaks: Exploring the impact of changing temperature regimes, droughts, forest structure, and prospects for future forest pest management. Rev. Environ. Sci. Biotechnol. 2024, 23, 257–290. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, F.E.; Latifi, H.; Ghosh, A.; Joshi, P.K.; Koch, B. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sens. Environ. 2014, 140, 533–548. [Google Scholar] [CrossRef]
- Kloucek, T.; Komárek, J.; Surový, P.; Hrach, K.; Janata, P.; Vašícek, B. The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle Infestation. Remote Sens. 2019, 11, 1561. [Google Scholar] [CrossRef]
- EPPO. EPPO Global Database. Datasheet: Polygraphus proximus. 2025. Available online: https://gd.eppo.int/taxon/POLGPR (accessed on 26 February 2025).
- Schroeder, L.; Weslien, J.; Åke, L.; Lindhe, A. Attacks by bark- and wood-boring Coleoptera on mechanically created high stumps of Norway spruce in the two years following cutting. For. Ecol. Manag. 1999, 123, 21–30. [Google Scholar] [CrossRef]
- Jaime, L.; Batllori, E.; Lloret, F. Bark beetle outbreaks in coniferous forests: A review of climate change effects. Eur. J. For. Res. 2024, 143, 1–17. [Google Scholar] [CrossRef]
- Müller, J.; Bußler, H.; Goßner, M.; Rettelbach, T.; Duelli, P. The European spruce bark beetle Ips typographus in a national park: From pest to keystone species. Biodivers. Conserv. 2008, 17, 2979–3001. [Google Scholar] [CrossRef]
- Leidemer, T.; Gonroudobou, O.; Nguyen, H.; Ferracini, C.; Burkhard, B.; Diez, Y.; Lopez Caceres, M. Classifying the Degree of Bark Beetle-Induced Damage on Fir (Abies mariesii) Forests, from UAV-Acquired RGB Images. Computation 2022, 10, 63. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches. Isprs Int. J. Geo-Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- Tran, T.; Lopez Caceres, M.; Riera, S.i.; Conciatori, M.; Kuwabara, Y.; Tsou, C.Y.; Diez, Y. Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains. Remote Sens. 2024, 16, 3831. [Google Scholar] [CrossRef]
- Gambella, F.; Sistu, L.; Piccirilli, D.; Corposanto, S.; Caria, M.; Arcangeletti, E.; Proto, A.R.; Chessa, G.; Pazzona, A. Forest and UAV: A Bibliometric Review. Contemp. Eng. Sci. 2016, 9, 1359–1370. [Google Scholar] [CrossRef]
- Paneque-Gálvez, J.; McCall, M.; Napoletano, B.; Wich, S.; Koh, L. Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas. Forests 2014, 5, 1481–1507. [Google Scholar] [CrossRef]
- Gonroudobou, O.B.H.; Silvestre, L.H.; Diez, Y.; Nguyen, H.T.; Caceres, M.L.L. Treetop Detection in Mountainous Forests Using UAV Terrain Awareness Function. Computation 2022, 10, 90. [Google Scholar] [CrossRef]
- Mohan, M.; Richardson, G.; Gopan, G.; Aghai, M.M.; Bajaj, S.; Galgamuwa, G.A.P.; Vastaranta, M.; Arachchige, P.S.P.; Amorós, L.; Corte, A.P.D.; et al. UAV-Supported Forest Regeneration: Current Trends, Challenges and Implications. Remote Sens. 2021, 13, 2596. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Wang, L.; Cai, J.; Wang, T.; Zhao, J.; Gadekallu, T.R.; Fang, K. Detection of Pine Wilt Disease Using AAV Remote Sensing with an Improved YOLO Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 19230–19242. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Gensheng, H.; Pan, Y.; Mingzhu, W.; Wenxia, B.; Weihui, Z. Detection and classification of diseased pine trees with different levels of severity from UAV remote sensing images. Ecol. Inform. 2022, 72, 101844. [Google Scholar]
- Jarahizadeh, S.; Salehi, B. Advancing tree detection in forest environments: A deep learning object detector approach with UAV LiDAR data. Urban For. Urban Green. 2025, 105, 128695. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Bi, H.; Chen, R.; Zong, S.; Luo, Y. A Detection Method for Individual Infected Pine Trees with Pine Wilt Disease Based on Deep Learning. Forests 2022, 13, 1880. [Google Scholar] [CrossRef]
- Kerchev, I.; Markov, N.; Machuca, C.; Tokareva, O. Classification of pest-damaged coniferous trees in unmanned aerial vehicles images using convolutional neural network models. Comput. Res. Model. 2024, 16, 1271–1294. [Google Scholar] [CrossRef]
- Illarionova, S.; Tregubova, P.; Shukhratov, I.; Shadrin, D.; Kedrov, A.; Burnaev, E. Remote sensing data fusion approach for estimating forest degradation: A case study of boreal forests damaged by Polygraphus proximus. Front. Environ. Sci. 2024, 12, 1412870. [Google Scholar] [CrossRef]
- Anwander, J.; Brandmeier, M.; Paczkowski, S.; Neubert, T.; Paczkowska, M. Evaluating Different Deep Learning Approaches for Tree Health Classification Using High-Resolution Multispectral UAV Data in the Black Forest, Harz Region, and Göttinger Forest. Remote Sens. 2024, 16, 561. [Google Scholar] [CrossRef]
- Safonova, A.; Hamad, Y.; Alekhina, A.; Kaplun, D. Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures. IEEE Access 2022, 10, 10384–10392. [Google Scholar] [CrossRef]
- Tan, C.; Lin, Q.; Du, H.; Chen, C.; Hu, M.; Chen, J.; Huang, Z.; Xu, Y. Detection of the Infection Stage of Pine Wilt Disease and Spread Distance Using Monthly UAV-Based Imagery and a Deep Learning Approach. Remote Sens. 2024, 16, 364. [Google Scholar] [CrossRef]
- Kanerva, H.; Honkavaara, E.; Näsi, R.; Hakala, T.; Junttila, S.; Karila, K.; Koivumäki, N.; Alves Oliveira, R.; Pelto-Arvo, M.; Pölönen, I.; et al. Estimating Tree Health Decline Caused by Ips typographus L. from UAS RGB Images Using a Deep One-Stage Object Detection Neural Network. Remote Sens. 2022, 14, 6257. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, R.; Shi, W.; Liu, X.; Ren, Y.; Xu, S.; Wang, X. Detection of Pine-Wilt-Disease-Affected Trees Based on Improved YOLO v7. Forests 2024, 15, 691. [Google Scholar] [CrossRef]
- Ma, H.; Yang, B.; Wang, R.; Yu, Q.; Yang, Y.; Wei, J. Automatic Extraction of Discolored Tree Crowns Based on an Improved Faster-RCNN Algorithm. Forests 2025, 16, 382. [Google Scholar] [CrossRef]
- Andresini, G.; Appice, A.; Ienco, D.; Recchia, V. DIAMANTE: A data-centric semantic segmentation approach to map tree dieback induced by bark beetle infestations via satellite images. J. Intell. Inf. Syst. 2024, 62, 1531–1558. [Google Scholar] [CrossRef]
- Crosby, M.K.; McConnell, T.E.; Holderieath, J.J.; Meeker, J.R.; Steiner, C.A.; Strom, B.L.; Johnson, C.W. The Use of High-Resolution Satellite Imagery to Determine the Status of a Large-Scale Outbreak of Southern Pine Beetle. Remote Sens. 2024, 16, 582. [Google Scholar] [CrossRef]
- Minařík, R.; Langhammer, J.; Lendzioch, T. Detection of Bark Beetle Disturbance at Tree Level Using UAS Multispectral Imagery and Deep Learning. Remote Sens. 2021, 13, 4768. [Google Scholar] [CrossRef]
- Safonova, A.; Tabik, S.; Alcaraz-Segura, D.; Rubtsov, A.; Maglinets, Y.; Herrera, F. Detection of Fir Trees (Abies sibirica) Damaged by the Bark Beetle in Unmanned Aerial Vehicle Images with Deep Learning. Remote Sens. 2019, 11, 643. [Google Scholar] [CrossRef]
- Zhang, J.; Cong, S.; Zhang, G.; Ma, Y.; Zhang, Y.; Huang, J. Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet++. Sensors 2022, 22, 7440. [Google Scholar] [CrossRef]
- Kapil, R.; Marvasti-Zadeh, S.M.; Goodsman, D.; Ray, N.; Erbilgin, N. Classification of Bark Beetle-Induced Forest Tree Mortality using Deep Learning. arXiv 2022, arXiv:2207.07241. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Meddens, A.J.H. Landsat Time Series and Lidar as Predictors of Live and Dead Basal Area Across Five Bark Beetle-Affected Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3440–3452. [Google Scholar] [CrossRef]
- Chiba, S.; Shotaro, K.; Kosuke, H. Wide-area assessment of mass mortality in Abies mariesii forests in the Zao mountain range and subsequent regeneration. J. Jpn. For. Soc. 2020, 102, 108–114. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. Remote Comput. Vis. Found. 2016, 779–788. [Google Scholar] [CrossRef]
- Genest, C.; Nešlehová, J.; Remillard, B.; Murphy, O. Testing for independence in arbitrary distributions. Biometrika 2019, 106, 47–68. [Google Scholar] [CrossRef]
- Diez, Y.; Kentsch, S.; Fukuda, M.; Caceres, M.L.L.; Moritake, K.; Cabezas, M. Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review. Remote Sens. 2021, 13, 2837. [Google Scholar] [CrossRef]
- Tae, K.; Roh, Y.; Oh, Y.; Kim, H.; Whang, S. Data Cleaning for Accurate, Fair, and Robust Models: A Big Data—AI Integration Approach. In Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning, Amsterdam, The Netherlands, 30 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Bussotti, F.; Potočić, N.; Timmermann, V.; Lehmann, M.M.; Pollastrini, M. Tree crown defoliation in forest monitoring: Concepts, findings, and new perspectives for a physiological approach in the face of climate change. For. Int. J. For. Res. 2024, 97, 194–212. [Google Scholar] [CrossRef]
- Tanaka, N.; Nakao, K.; Tsuyama, I.; Higa, M.; Nakazono, E.; Matsui, T. Predicting the impact of climate change on potential habitats of fir (Abies) species in Japan and on the East Asian continent. Procedia Environ. Sci. 2012, 13, 455–466. [Google Scholar] [CrossRef]
- Avila-Pérez, H.; Guzmán-Martínez, M.; Rosas-Acevedo, J.L.; Navarro-Martínez, J.; Gallardo-Bernal, I. Study of the Spatial Distribution of the Bark Beetle in the Ejido Tixtlancingo. Forests 2024, 15, 916. [Google Scholar] [CrossRef]
- Kerchev, I. Ecology of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera; Curculionidae, Scolytinae) in the west Siberian region of invasion. Russ. J. Biol. Invasions 2014, 5, 176–185. [Google Scholar] [CrossRef]
- Tello, M.; Tomalak, M.; Siwecki, R.; Gaper, J.; Motta, E.; Mateo-Sagasta, E. Biotic Urban Growing Conditions—Threats, Pests and Diseases. In Urban Forests and Trees: A Reference Book; Springer: Berlin/Heidelberg, Germany, 2005; pp. 325–365. [Google Scholar] [CrossRef]
- Acosta-Muñoz, C.; Navarro-Cerrillo, R.M.; Bonet-García, F.J.; Ruiz-Gómez, F.J.; González-Moreno, P. Evolution and Paradigm Shift in Forest Health Research: A Review of Global Trends and Knowledge Gaps. Forests 2024, 15, 1279. [Google Scholar] [CrossRef]
- Ciriani, M.L.; Dalstein, L. Forest Health Monitoring Highlights Progress in Forest Deterioration in France. Water Air Soil Pollut. 2018, 229. [Google Scholar] [CrossRef]
Category | All Annotations (%) | Train Dataset (%) | Validation Dataset (%) |
---|---|---|---|
Healthy | 8360 (32.6) | 6615 (32.6) | 1745 (33.0) |
Light Damage | 6121 (24.0) | 4841 (23.8) | 1280 (24.2) |
Medium Damage | 2973 (12.0) | 2362 (11.6) | 611 (11.5) |
Heavy Damage | 2562 (10.0) | 2040 (10.0) | 522 (9.9) |
Dead | 4280 (16.7) | 3426 (16.9) | 854 (16.1) |
Fallen | 1031 (4.0) | 810 (4.0) | 221 (4.2) |
Artificial Object | 201 (0.8) | 157 (0.8) | 44 (0.8) |
Human | 69 (0.3) | 49 (0.2) | 20 (0.4) |
Category | Number (%) |
---|---|
Healthy | 82 (24.8) |
Light Damage | 116 (35.1) |
Medium Damage | 54 (16.4) |
Heavy Damage | 14 (4.2) |
Dead | 56 (17.0) |
Fallen | 8 (2.4) |
Year/Category | Healthy | Light Damage | Medium Damage | Heavy Damage | Dead | Fallen | Vanishing Logs |
---|---|---|---|---|---|---|---|
2021 October | 2695 | 875 | 104 | 36 | 274 | 17 | 0 |
2022 June | 1580 | 1522 | 382 | 48 | 306 | 163 | 6 |
2022 October | 1766 | 1501 | 213 | 38 | 321 | 154 | 13 |
2023 June | 1274 | 1790 | 335 | 80 | 342 | 167 | 20 |
2023 October | 1377 | 1830 | 183 | 65 | 360 | 156 | 37 |
2024 June | 1120 | 1942 | 322 | 53 | 359 | 157 | 55 |
2024 October | 1029 | 2024 | 307 | 50 | 395 | 81 | 132 |
Category | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|
Healthy | 68.4 | 81.5 | 74.4 | 59.7 |
Light Damage | 82.3 | 71.3 | 76.4 | 61.4 |
Medium Damage | 84.2 | 58.2 | 68.8 | 52.2 |
Heavy Damage | 64.7 | 78.6 | 71.0 | 54.6 |
Dead | 98.0 | 90.6 | 94.1 | 88.9 |
Fallen | 100.0 | 62.5 | 76.9 | 62.5 |
Category | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|
Healthy | 73.3 | 81.5 | 77.3 | 62.2 |
Damage | 94.9 | 81.9 | 87.8 | 78.5 |
Decay | 98.2 | 86.9 | 92.1 | 85.6 |
Metric | Aggregated Categories | Separated Categories |
---|---|---|
Accuracy [%] | 82.8 | 74.9 |
Precision [%] | 82.1 | 78.4 |
Recall [%] | 81.3 | 80.2 |
F1-score [%] | 80.7 | 78.4 |
IoU [%] | 76.8 | 72.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leidemer, T.; Lopez Caceres, M.L.; Diez, Y.; Ferracini, C.; Tsou, C.-Y.; Katahira, M. Evaluation of Temporal Trends in Forest Health Status Using Precise Remote Sensing. Drones 2025, 9, 337. https://doi.org/10.3390/drones9050337
Leidemer T, Lopez Caceres ML, Diez Y, Ferracini C, Tsou C-Y, Katahira M. Evaluation of Temporal Trends in Forest Health Status Using Precise Remote Sensing. Drones. 2025; 9(5):337. https://doi.org/10.3390/drones9050337
Chicago/Turabian StyleLeidemer, Tobias, Maximo Larry Lopez Caceres, Yago Diez, Chiara Ferracini, Ching-Ying Tsou, and Mitsuhiko Katahira. 2025. "Evaluation of Temporal Trends in Forest Health Status Using Precise Remote Sensing" Drones 9, no. 5: 337. https://doi.org/10.3390/drones9050337
APA StyleLeidemer, T., Lopez Caceres, M. L., Diez, Y., Ferracini, C., Tsou, C.-Y., & Katahira, M. (2025). Evaluation of Temporal Trends in Forest Health Status Using Precise Remote Sensing. Drones, 9(5), 337. https://doi.org/10.3390/drones9050337