Research on Automatic Tracking and Size Estimation Algorithm of “Low, Slow and Small” Targets Based on Gm-APD Single-Photon LIDAR
Abstract
:1. Introduction
2. Design of Single-Photon LiDAR Imaging System Based on Gm-APD
- Laser emission: Gm-APD LiDAR emits a high-power and narrow pulse laser, which is shaped by the optical launch system and accurately pointed at the target UAV;
- Echo signal reception: the echo photons reflected by the target are collected by the receiving optical system to the GM-APD detector, and the avalanche effect is triggered;
- Signal recording and transmission: GM-APD detector captures and records echo signals and transmits data to the data acquisition and processing system;
- Data processing and image reconstruction: The data acquisition and processing system processes the received signals and reconstructs the target’s intensity image and range image.
- Target tracking: An algorithm is applied based on image reconstruction results to realize target tracking.
3. Design of Automatic Tracking Algorithm Based on Mean-Shift
3.1. Principle of Mean-Shift Algorithm
3.1.1. Construction of Target Model
3.1.2. Construction of Candidate Target Model
3.1.3. Target Similarity Measurement
3.1.4. Mean-Shift Vector Iteration
3.2. Algorithm Improvement
- Target center fitting algorithm;
- Drawing the target rectangle algorithm;
- Target size calculation algorithm.
3.2.1. Target Center Fitting Algorithm
3.2.2. Drawing the Target Rectangle Algorithm
- Firstly, the Canny edge detection algorithm [53,54] is used to extract the edge of the intensity image of Gm-APD LiDAR, and multi-level filtering and gradient calculation are carried out. Edge points can be accurately detected while reducing noise. The calculation flow is as shown in Figure 7.
- (a)
- Gaussian smoothing: The original intensity image is smoothed by a Gaussian filter to reduce the influence of noise on edge detection, and its mathematical expression is:
- (b)
- Gradient calculation: Calculate the gradient (amplitude and direction) of the image by the following formula to identify the target edge:
- (c)
- Edge image: processing the gradient amplitude by setting high and low thresholds to generate a binary edge image of the LiDAR intensity image.
- To further analyze the spatial distribution characteristics of the target edge point set in the intensity image, the PCA method is introduced to accurately estimate the rotation angle of the rectangular box by calculating the principal direction of the edge point set [38,55]. The calculation flow is as shown in Figure 8.
- (a)
- Constructing a centralization matrix D: decentralizing the edge points according to the weighted centroid fitted in the previous section further to determine the main direction of the edge points, and constructing a centralization matrix D:
- (b)
- Calculating covariance matrix ∑: the covariance matrix ∑ of matrix D is:
- (c)
- Eigenvalue decomposition: eigenvalue decomposition is performed on the covariance matrix ∑ to obtain the eigenvector corresponding to the maximum eigenvalue , the principal direction vector of the target edge point set. Therefore, the rotation angle in the main direction can be calculated by the following formula:
- After obtaining the central direction angle, the edge point set of the target is fitted by a rotating rectangle. The center of the fitted rectangle is still , and the width and height of the fitted rectangle are determined by the coordinate range of the edge points :
- Finally, use the rotation matrix R to rotate the corners of the fitted rectangle around the center of mass to the main direction:The corner coordinate of the fitted rectangle after rotation is:
3.2.3. Target Size Calculation Algorithm
4. Analysis of Experimental Results
4.1. Analysis of the Results of Target Center Fitting Algorithm
4.2. Analysis of the Results of Drawing the Rectangular Frame of the First Frame Target
4.3. Analysis of Target Automatic Tracking Results
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Ali, Z.A. Advances in UAV Detection, Classification and Tracking; Editorial of Special Issue; MDPI: Basel, Switzerland, 2023. [Google Scholar]
- Wang, B.; Li, Q.; Mao, Q.; Wang, J.; Chen, C.P.; Shangguan, A.; Zhang, H. A Survey on Vision-Based Anti Unmanned Aerial Vehicles Methods. Drones 2024, 8, 518. [Google Scholar] [CrossRef]
- Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Mei, X.; Ling, H. Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2259–2272. [Google Scholar]
- Kumar, M.; Mondal, S. Recent developments on target tracking problems: A review. Ocean. Eng. 2021, 236, 109558. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift analysis and applications. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, 20–27 September 1999; Volume 2, pp. 1197–1203. [Google Scholar]
- Carreira-Perpinán, M.A. A review of mean-shift algorithms for clustering. arXiv 2015, arXiv:1503.00687. [Google Scholar]
- Harvey, B.; O’Young, S. Acoustic detection of a fixed-wing UAV. Drones 2018, 2, 4. [Google Scholar] [CrossRef]
- Yang, F.; Xu, F.; Yang, X.; Liu, Q. DDMA MIMO radar system for low, slow, and small target detection. J. Eng. 2019, 2019, 5932–5935. [Google Scholar] [CrossRef]
- Alhaji Musa, S.; Raja Abdullah, R.S.A.; Sali, A.; Ismail, A.; Abdul Rashid, N.E. Low-slow-small (LSS) target detection based on micro Doppler analysis in forward scattering radar geometry. Sensors 2019, 19, 3332. [Google Scholar] [CrossRef]
- Pang, D.; Shan, T.; Ma, P.; Li, W.; Liu, S.; Tao, R. A novel spatiotemporal saliency method for low-altitude slow small infrared target detection. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Farlik, J.; Kratky, M.; Casar, J.; Stary, V. Radar cross section and detection of small unmanned aerial vehicles. In Proceedings of the 2016 17th International Conference on Mechatronics-Mechatronika (ME), Prague, Czech Republic, 7–9 December 2016; pp. 1–7. [Google Scholar]
- Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 552–568. [Google Scholar]
- Shi, X.; Yang, C.; Xie, W.; Liang, C.; Shi, Z.; Chen, J. Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges. IEEE Commun. Mag. 2018, 56, 68–74. [Google Scholar] [CrossRef]
- Unlu, E.; Zenou, E.; Riviere, N.; Dupouy, P.E. Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 7. [Google Scholar] [CrossRef]
- Dadrass Javan, F.; Samadzadegan, F.; Gholamshahi, M.; Ashatari Mahini, F. A modified YOLOv4 Deep Learning Network for vision-based UAV recognition. Drones 2022, 6, 160. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Q.; Huang, H.; Han, Z.; Gu, Q. A modified YOLOv8 detection network for UAV aerial image recognition. Drones 2023, 7, 304. [Google Scholar] [CrossRef]
- Al-Emadi, S.; Al-Ali, A.; Mohammad, A.; Al-Ali, A. Audio based drone detection and identification using deep learning. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 459–464. [Google Scholar]
- Fang, H.; Xia, M.; Zhou, G.; Chang, Y.; Yan, L. Infrared small UAV target detection based on residual image prediction via global and local dilated residual networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Kersta, L.G. Voiceprint identification. J. Acoust. Soc. Am. 1962, 34, 725. [Google Scholar] [CrossRef]
- Ohlenbusch, M.; Ahrens, A.; Rollwage, C.; Bitzer, J. Robust drone detection for acoustic monitoring applications. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 6–10. [Google Scholar]
- Yaacoub, M.; Younes, H.; Rizk, M. Acoustic drone detection based on transfer learning and frequency domain features. In Proceedings of the 2022 International Conference on Smart Systems and Power Management (IC2SPM), Beirut, Lebanon, 10–12 November 2022; pp. 47–51. [Google Scholar]
- Wojtanowski, J.; Zygmunt, M.; Drozd, T.; Jakubaszek, M.; Życzkowski, M.; Muzal, M. Distinguishing drones from birds in a UAV searching laser scanner based on echo depolarization measurement. Sensors 2021, 21, 5597. [Google Scholar] [CrossRef]
- Dogru, S.; Marques, L. Drone detection using sparse lidar measurements. IEEE Robot. Autom. Lett. 2022, 7, 3062–3069. [Google Scholar] [CrossRef]
- Hasan, M.; Hanawa, J.; Goto, R.; Suzuki, R.; Fukuda, H.; Kuno, Y.; Kobayashi, Y. LiDAR-based detection, tracking, and property estimation: A contemporary review. Neurocomputing 2022, 506, 393–405. [Google Scholar] [CrossRef]
- Abir, T.A.; Kuantama, E.; Han, R.; Dawes, J.; Mildren, R.; Nguyen, P. Towards robust lidar-based 3D detection and tracking of UAVs. In Proceedings of the Ninth Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, Helsinki, Finland, 18 June 2023; pp. 1–7. [Google Scholar]
- McCarthy, A.; Ren, X.; Della Frera, A.; Gemmell, N.R.; Krichel, N.J.; Scarcella, C.; Ruggeri, A.; Tosi, A.; Buller, G.S. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt. Express 2013, 21, 22098–22113. [Google Scholar] [CrossRef]
- Pawlikowska, A.M.; Halimi, A.; Lamb, R.A.; Buller, G.S. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express 2017, 25, 11919–11931. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Sun, J.; Gao, S.; Ma, L.; Jiang, P.; Guo, S.; Zhou, X. Single-parameter estimation construction algorithm for Gm-APD ladar imaging through fog. Opt. Commun. 2021, 482, 126558. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Zhang, Y.; Zhang, L.; Sun, M. Review of advances in single-photon LiDAR. Chin. J. Lasers 2022, 49, 1910003. [Google Scholar]
- Zhou, H.; He, Y.; You, L.; Chen, S.; Zhang, W.; Wu, J.; Wang, Z.; Xie, X. Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector. Opt. Express 2015, 23, 14603–14611. [Google Scholar] [CrossRef]
- Liu, B.; Yu, Y.; Chen, Z.; Han, W. True random coded photon counting Lidar. Opto-Electron. Adv. 2020, 3, 190044-1–190044-6. [Google Scholar] [CrossRef]
- Ding, Y.; Qu, Y.; Zhang, Q.; Tong, J.; Yang, X.; Sun, J. Research on UAV detection technology of Gm-APD Lidar based on YOLO model. In Proceedings of the 2021 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 15–17 October 2021; pp. 105–109. [Google Scholar]
- Tachella, J.; Altmann, Y.; Mellado, N.; McCarthy, A.; Tobin, R.; Buller, G.S.; Tourneret, J.Y.; McLaughlin, S. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nat. Commun. 2019, 10, 4984. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Sun, J.; Liu, D.; Zhang, X.; Yang, X.; Zhou, X. Dual-parameter estimation algorithm for Gm-APD Lidar depth imaging through smoke. Measurement 2022, 196, 111269. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Jiang, P.; Qiu, C.; Wang, Q. Improvement of detection probability and ranging performance of Gm-APD LiDAR with spatial correlation and adaptive adjustment of the aperture diameter. Opt. Lasers Eng. 2021, 138, 106452. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Yang, J.; Rahardja, S.; Fränti, P. Mean-shift outlier detection and filtering. Pattern Recognit. 2021, 115, 107874. [Google Scholar] [CrossRef]
- Gustafsson, F. Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 53–82. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, Y.; Shi, C. Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 2009, 113, 345–352. [Google Scholar] [CrossRef]
- Leichter, I.; Lindenbaum, M.; Rivlin, E. Mean shift tracking with multiple reference color histograms. Comput. Vis. Image Underst. 2010, 114, 400–408. [Google Scholar] [CrossRef]
- Choi, E.; Lee, C. Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 2003, 36, 1703–1709. [Google Scholar] [CrossRef]
- Bi, S.; Broggi, M.; Beer, M. The role of the Bhattacharyya distance in stochastic model updating. Mech. Syst. Signal Process. 2019, 117, 437–452. [Google Scholar] [CrossRef]
- Vojir, T.; Noskova, J.; Matas, J. Robust scale-adaptive mean-shift for tracking. Pattern Recognit. Lett. 2014, 49, 250–258. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Tang, Z.; Lu, X. A robust circle detection algorithm based on top-down least-square fitting analysis. Comput. Electr. Eng. 2014, 40, 1415–1428. [Google Scholar] [CrossRef]
- Hassanein, A.S.; Mohammad, S.; Sameer, M.; Ragab, M.E. A survey on Hough transform, theory, techniques and applications. arXiv 2015, arXiv:1502.02160. [Google Scholar]
- Mukhopadhyay, P.; Chaudhuri, B.B. A survey of Hough Transform. Pattern Recognit. 2015, 48, 993–1010. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, G.; Wang, M.; Xu, Y.; Zhu, D. An algorithm for fitting sphere target of terrestrial LiDAR. Sensors 2021, 21, 7546. [Google Scholar] [CrossRef]
- Fu, Z.; Han, Y. Centroid weighted Kalman filter for visual object tracking. Measurement 2012, 45, 650–655. [Google Scholar] [CrossRef]
- Sun, T.; Xing, F.; Bao, J.; Zhan, H.; Han, Y.; Wang, G.; Fu, S. Centroid determination based on energy flow information for moving dim point targets. Acta Astronaut. 2022, 192, 424–433. [Google Scholar] [CrossRef]
- Wang, J.; Urriza, P.; Han, Y.; Cabric, D. Weighted centroid localization algorithm: Theoretical analysis and distributed implementation. IEEE Trans. Wirel. Commun. 2011, 10, 3403–3413. [Google Scholar] [CrossRef]
- Rong, W.; Li, Z.; Zhang, W.; Sun, L. An improved CANNY edge detection algorithm. In Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 577–582. [Google Scholar]
- Xuan, L.; Hong, Z. An improved canny edge detection algorithm. In Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017; pp. 275–278. [Google Scholar]
- Kherif, F.; Latypova, A. Principal component analysis. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–225. [Google Scholar]
- Zhu, J.; Zeng, Q.; Han, F.; Jia, C.; Bian, Y.; Wei, C. Design of laser scanning binocular stereo vision imaging system and target measurement. Optik 2022, 270, 169994. [Google Scholar] [CrossRef]
- Cossio, T.K.; Slatton, K.C.; Carter, W.E.; Shrestha, K.Y.; Harding, D. Predicting small target detection performance of low-SNR airborne LiDAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 672–688. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Chen, Q.; Chen, M.; Zhan, S.; Cheung, N.k.; Chan, H.Y.; Wang, Z.; Li, W.J. Development of the high angular resolution 360° LiDAR based on scanning MEMS mirror. Sci. Rep. 2023, 13, 1540. [Google Scholar] [CrossRef]
- Dai, Z.; Wolf, A.; Ley, P.P.; Glück, T.; Sundermeier, M.C.; Lachmayer, R. Requirements for automotive lidar systems. Sensors 2022, 22, 7532. [Google Scholar] [CrossRef]
- Chen, S.Y. Kalman filter for robot vision: A survey. IEEE Trans. Ind. Electron. 2011, 59, 4409–4420. [Google Scholar] [CrossRef]
- Gunjal, P.R.; Gunjal, B.R.; Shinde, H.A.; Vanam, S.M.; Aher, S.S. Moving object tracking using kalman filter. In Proceedings of the 2018 International Conference On Advances in Communication and Computing Technology (ICACCT), Sangamner, India, 8–9 February 2018; pp. 544–547. [Google Scholar]
- Exner, D.; Bruns, E.; Kurz, D.; Grundhöfer, A.; Bimber, O. Fast and robust CAMShift tracking. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 9–16. [Google Scholar]
- Guo, D.; Qu, Y.; Zhou, X.; Sun, J.; Yin, S.; Lu, J.; Liu, F. Research on Cam–Kalm Automatic Tracking Technology of Low, Slow, and Small Target Based on Gm-APD LiDAR. Remote Sens. 2025, 17, 165. [Google Scholar] [CrossRef]
Parameter | Positional Information (pixels) |
---|---|
Corner 1 | (27.36, 12.77) |
Corner 2 | (39.31, 12.26) |
Corner 3 | (39.65, 20.06) |
Corner 4 | (27.70, 20.57) |
Center position | (33.51, 16.42) |
W (Width of rectangular frame) | 11.94 |
L (Length of rectangular frame) | 7.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Qu, Y.; Zhou, X.; Sun, J.; Yin, S.; Lu, J.; Liu, F. Research on Automatic Tracking and Size Estimation Algorithm of “Low, Slow and Small” Targets Based on Gm-APD Single-Photon LIDAR. Drones 2025, 9, 85. https://doi.org/10.3390/drones9020085
Guo D, Qu Y, Zhou X, Sun J, Yin S, Lu J, Liu F. Research on Automatic Tracking and Size Estimation Algorithm of “Low, Slow and Small” Targets Based on Gm-APD Single-Photon LIDAR. Drones. 2025; 9(2):85. https://doi.org/10.3390/drones9020085
Chicago/Turabian StyleGuo, Dongfang, Yanchen Qu, Xin Zhou, Jianfeng Sun, Shengwen Yin, Jie Lu, and Feng Liu. 2025. "Research on Automatic Tracking and Size Estimation Algorithm of “Low, Slow and Small” Targets Based on Gm-APD Single-Photon LIDAR" Drones 9, no. 2: 85. https://doi.org/10.3390/drones9020085
APA StyleGuo, D., Qu, Y., Zhou, X., Sun, J., Yin, S., Lu, J., & Liu, F. (2025). Research on Automatic Tracking and Size Estimation Algorithm of “Low, Slow and Small” Targets Based on Gm-APD Single-Photon LIDAR. Drones, 9(2), 85. https://doi.org/10.3390/drones9020085