LCSC-UAVNet: A High-Precision and Lightweight Model for Small-Object Identification and Detection in Maritime UAV Perspective
Abstract
:1. Introduction
- A novel, high-precision, and lightweight detection model designed for drone-based small-object detection over the sea was proposed;
- To improve parameter utilization and enhance detail capture for small objects, we designed the LSDCH to effectively balance accuracy and efficiency in UAV-based maritime detection tasks;
- A lightweight CScConv module was designed to enhance the performance of maritime small-object detection while reducing the number of parameters and computational cost;
- A lightweight CGM was proposed to effectively capture global contextual information from the maritime environment and extract features pertinent to small objects within drone images.
2. Relative Works
2.1. Small-Object Detection
2.2. Lightweight
2.3. Maritime Object Detection in Complex Environments
3. Method
3.1. Overall Network Architecture of the Model
3.2. Lightweight Shared Difference Convolution Detection Head (LSDCH)
3.3. CScConv Module
3.4. Contextual Global Module (CGM)
3.5. Wise-IoUv2
4. Experimental Results and Discussion
4.1. Dataset and Experimental Design
4.2. Experimental Environment Configuration
4.3. Ablation Experiment
Ablation Experiments on the SeaDronesSee Dataset
4.4. Comparison Experiment
4.4.1. Comparison Experiments on the SeaDronesSee Dataset
4.4.2. Comparison Experiments on the AFO Dataset
4.4.3. Comparison Experiments on the MOBDrone Dataset
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Shvetsova, S.V.; Alhartomi, M.A.; Hawbani, A.; Rajput, N.S.; Srivastava, S.; Saif, A.; Nyangaresi, V.O. UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones 2022, 6, 154. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, Q.; Yin, Y. A Lightweight Man-Overboard Detection and Tracking Model Using Aerial Images for Maritime Search and Rescue. Remote Sens. 2023, 16, 165. [Google Scholar] [CrossRef]
- Sun, B.; Bi, K.; Wang, Q. YOLOv7-FIRE: A tiny-fire identification and detection method applied on UAV. AIMS Math. 2024, 9, 10775–10801. [Google Scholar] [CrossRef]
- Xin, W.; Pu, C.; Liu, W.; Liu, K. Landslide surface horizontal displacement monitoring based on image recognition technology and computer vision. Geomorphology 2023, 431, 108691. [Google Scholar] [CrossRef]
- Lyu, H.; Shao, Z.; Cheng, T.; Yin, Y.; Gao, X. Sea-surface object detection based on electro-optical sensors: A review. IEEE Intell. Transp. Syst. Mag. 2022, 15, 190–216. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, Y.; Jing, Q.; Shao, Z. A High-Precision Detection Model of Small Objects in Maritime UAV Perspective Based on Improved YOLOv5. J. Mar. Sci. Eng. 2023, 11, 1680. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Shao, Z. An Enhanced Target Detection Algorithm for Maritime Search and Rescue Based on Aerial Images. Remote Sens. 2023, 15, 4818. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, N.; Shi, R.; Wang, G.; Xu, Y.; Chen, Z. SG-Det: Shuffle-GhostNet-based detector for real-time maritime object detection in UAV images. Remote Sens. 2023, 15, 3365. [Google Scholar] [CrossRef]
- Wang, S.; Han, Y.; Chen, J.; Zhang, Z.; Wang, G.; Du, N. A deep-learning-based sea search and rescue algorithm by UAV remote sensing. In Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018; pp. 1–5. [Google Scholar]
- Liu, H.I.; Tseng, Y.W.; Chang, K.C.; Wang, P.J.; Shuai, H.H.; Cheng, W.H. A DeNoising FPN with Transformer R-CNN for Tiny Object Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, L.; Ji, K.; Kuang, G. A Domain Adaptive Few-Shot SAR Ship Detection Algorithm Driven by the Latent Similarity between Optical and SAR Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Z. CE-RetinaNet: A channel enhancement method for infrared wildlife detection in UAV images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, G.; Xin, Z.; Liao, G.; Huang, P.; Tai, Y. Detection of SAR image multiscale ship targets in complex inshore scenes based on improved YOLOv5. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5804–5823. [Google Scholar] [CrossRef]
- Bai, Z.; Pei, X.; Qiao, Z.; Wu, G.; Bai, Y. Improved YOLOv7 Target Detection Algorithm Based on UAV Aerial Photography. Drones 2024, 8, 104. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, T.; Liu, D. MFFAGAN: Generative Adversarial Network With Multi-Level Feature Fusion Attention Mechanism for Remote Sensing Image Super-Resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6860–6874. [Google Scholar] [CrossRef]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Deng, W.; Li, X.; Xu, J.; Li, W.; Zhu, G.; Zhao, H. BFKD: Blockchain-based federated knowledge distillation for aviation Internet of Things. IEEE Trans. Reliab. 2024. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Xu, J.; Zhu, G.; Deng, W. APDPFL: Anti-poisoning attack decentralized privacy enhanced federated learning scheme for flight operation data sharing. IEEE Trans. Wirel. Commun. 2024, 23, 19098–19109. [Google Scholar] [CrossRef]
- Luan, T.; Zhou, S.; Liu, L.; Pan, W. Tiny-Object Detection Based on Optimized YOLO-CSQ for Accurate Drone Detection in Wildfire Scenarios. Drones 2024, 8, 454. [Google Scholar] [CrossRef]
- Varga, L.A.; Kiefer, B.; Messmer, M.; Zell, A. Seadronessee: A maritime benchmark for detecting humans in open water. In Proceedings of the IEEE/CVF winter conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 2260–2270. [Google Scholar]
- Gasienica-Jozkowy, J.; Knapik, M.; Cyganek, B. An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance. Integr. Comput.-Aided Eng. 2021, 28, 221–235. [Google Scholar] [CrossRef]
- Cafarelli, D.; Ciampi, L.; Vadicamo, L.; Gennaro, C.; Berton, A.; Paterni, M.; Benvenuti, C.; Passera, M.; Falchi, F. MOBDrone: A drone video dataset for man overboard rescue. In Proceedings of the International Conference on Image Analysis and Processing, Lecce, Italy, 23–27 May 2022; pp. 633–644. [Google Scholar]
- Han, J.; Yang, W.; Wang, Y.; Chen, L.; Luo, Z. Remote Sensing Teacher: Cross-Domain Detection Transformer with Learnable Frequency-Enhanced Feature Alignment in Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar] [CrossRef]
- Xu, H.; Ling, Z.; Yuan, X.; Wang, Y. A video object detector with Spatio-Temporal Attention Module for micro UAV detection. Neurocomputing 2024, 597, 127973. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Liu, H.; Guo, J.; Liu, L.; Gu, J.; Deng, L.; Li, S. A novel small object detection algorithm for UAVs based on YOLOv5. Phys. Scr. 2024, 99, 036001. [Google Scholar] [CrossRef]
- Yi, H.; Liu, B.; Zhao, B.; Liu, E. Small object detection algorithm based on improved YOLOv8 for remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1734–1747. [Google Scholar] [CrossRef]
- Chen, C.; Zeng, W.; Zhang, X. HFPNet: Super Feature Aggregation Pyramid Network for Maritime Remote Sensing Small-Object Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5973–5989. [Google Scholar] [CrossRef]
- Xie, S.; Zhou, M.; Wang, C.; Huang, S. CSPPartial-YOLO: A lightweight YOLO-based method for typical objects detection in remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 388–399. [Google Scholar] [CrossRef]
- Ge, W.; Yang, X.; Jiang, R.; Shao, W.; Zhang, L. CD-CTFM: A Lightweight CNN-Transformer Network for Remote Sensing Cloud Detection Fusing Multiscale Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4538–4551. [Google Scholar] [CrossRef]
- Chen, N.; Li, Y.; Yang, Z.; Lu, Z.; Wang, S.; Wang, J. LODNU: Lightweight object detection network in UAV vision. J. Supercomput. 2023, 79, 10117–10138. [Google Scholar] [CrossRef]
- Pikun, W.; Ling, W.; Jiangxin, Q.; Jiashuai, D. Unmanned aerial vehicles object detection based on image haze removal under sea fog conditions. IET Image Processing 2022, 16, 2709–2721. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Z.; Meng, L.; Wang, J.; Wang, T.; Gao, Q.; Wang, E. Anti-Occlusion UAV Tracking Algorithm with a Low-Altitude Complex Background by Integrating Attention Mechanism. Drones 2022, 6, 149. [Google Scholar] [CrossRef]
- Zeng, S.; Yang, W.; Jiao, Y.; Geng, L.; Chen, X. SCA-YOLO: A new small object detection model for UAV images. Vis. Comput. 2024, 40, 1787–1803. [Google Scholar] [CrossRef]
- Li, W.; Liu, D.; Li, Y.; Hou, M.; Liu, J.; Zhao, Z.; Guo, A.; Zhao, H.; Deng, W. Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data. Struct. Health Monit. 2024. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.; He, L. Scconv: Spatial and channel reconstruction convolution for feature redundancy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 6153–6162. [Google Scholar]
- Li, F.; Guo, M.; Su, R.; Wang, Y.; Wang, Y.; Xu, F. A multi-frame fusion video deraining neural network based on depth and luminance features. Displays 2024, 85, 102842. [Google Scholar] [CrossRef]
Datasets | Category | Epoch |
---|---|---|
SeaDroneSee | swimmer, floater, boat | 300 |
AFO | human, windboard, boat, buoy, sailboat, kayak | 300 |
MOBDrone | person, boat, surfboard, wood, lifebuoy | 100 |
Parameters | Configuration |
---|---|
Learning rate | 0.01 |
Momentum | 0.937 |
Box | 7.5 |
Works | 8 |
Patience | 50 |
Batch size | 16 |
Image size | 640 × 640 |
Ablation | LSDCH | CScConv | CGM | WIoU | mAP@50 | mAP@95 | P | R | Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|---|
1 | × | × | × | × | 78.6% | 45.6% | 83.1% | 72.4% | 7.6 M | 35.5 G |
2 | √ | × | × | × | 80.4% | 46% | 84.6% | 73.4% | 8.0 M | 24.7 G |
3 | × | √ | × | × | 80.2% | 45.6% | 83.7% | 72.8% | 7.4 M | 34.4 G |
4 | × | × | √ | × | 80.9% | 47% | 83.8% | 74.3% | 5.4 M | 28.3 G |
5 | × | × | × | √ | 81.2% | 46.2% | 86% | 73.4% | 7.6 M | 35.5 G |
6 | √ | √ | × | × | 81.2% | 46.5% | 83% | 74.3% | 7.8 M | 23.8 G |
7 | √ | √ | √ | × | 81.6% | 46.5% | 84.6% | 74.6% | 5.6 M | 16.3 G |
8 | √ | √ | √ | √ | 82.3% | 47.6% | 84.8% | 74.8% | 5.6 M | 16.3 G |
Method | mAP@50 | mAP@95 | Params | FLOPs | Recall | Detection Speed |
---|---|---|---|---|---|---|
DETR | 75.3% | 38.6% | 36.7 M | 100.94 G | 59.8% | 1.09 s |
Faster-RCNN | 52.1% | 33.8 | 40 M | 206.7 G | 30.3% | 3.00 s |
YOLOv3 | 77.2% | 42.7% | 61.52 M | 77.54 G | 70.3% | 0.25 s |
YOLOv3-tiny | 67.7% | 34.3% | 8.9 M | 12.9 G | 65.1% | 0.23 s |
YOLOv5 | 73.1% | 39.2% | 20.85 M | 47.9 G | 69.8% | 0.15 s |
YOLOv6 | 65.2% | 34.9% | 11.5 M | 27.6 G | 62.1% | 0.21 s |
YOLOX | 71.6% | 42.3% | 9.0 M | 26.8 G | 63.4% | 0.24 s |
YOLOv8 | 72% | 42.8% | 11.16 M | 28.8 G | 64.2% | 0.17 s |
YOLOv10 | 66.7% | 37.6% | 7.2 M | 21.6 G | 59.4% | 0.12 s |
RT-DETR | 69.7% | 36.7% | 32.81 M | 108 G | 64.5% | 0.15 s |
LCSC-UAVNet | 82.3% | 47.6% | 5.6 M | 16.3 G | 74.8% | 0.08 s |
Method | mAP@50 | mAP@95 | Params | FLOPs | Recall | Detection Speed |
---|---|---|---|---|---|---|
DETR | 93.3% | 56.7% | 36.7 M | 100.94 G | 73.4% | 0.31 s |
Faster-RCNN | 64.7% | 32.6% | 40 M | 206.7 G | 53.7% | 2.47 s |
YOLOv3 | 94.7% | 60.2% | 61.52 M | 77.54 G | 90.2% | 0.29 s |
YOLOv3-tiny | 90.7% | 55.5% | 8.9 M | 12.9 G | 87.6% | 0.19 s |
YOLOv5 | 94.2% | 59.2% | 20.85 M | 47.9 G | 91.7% | 0.18 s |
YOLOv6 | 86.7% | 53.2% | 11.5 M | 27.6 G | 71.3% | 0.20 s |
YOLOX | 93.3% | 63.5% | 9.0 M | 26.8 G | 85.7% | 0.19 s |
YOLOv8 | 90% | 60.1% | 11.16 M | 28.8 G | 85.7% | 0.19 s |
YOLOv10 | 92% | 63.1% | 7.2 M | 21.6 G | 86.8% | 0.17 s |
RT-DETR | 83.4% | 44.9% | 32.81 M | 108 G | 77.6% | 0.25 s |
LCSC-UAVNet | 95.8% | 64.4% | 5.6 M | 16.3 G | 92.3% | 0.16 s |
Method | mAP@50 | mAP@95 | Params | FLOPs | Recall | Detection Speed |
---|---|---|---|---|---|---|
DETR | 88.6% | 51.4% | 36.7 M | 100.94 G | 72.3% | 0.22 s |
Faster-RCNN | 65.9% | 31.1% | 40 M | 206.7 G | 70.7% | 0.52 s |
YOLOv3 | 97.3% | 87.8% | 61.52 M | 77.54 G | 96.3% | 0.15 s |
YOLOv3-tiny | 92.9% | 70.5% | 8.9 M | 12.9 G | 91.7% | 0.12 s |
YOLOv5 | 94.2% | 76.1% | 20.85 M | 47.9 G | 93.6% | 0.13 s |
YOLOv6 | 88.2% | 67.8% | 11.5 M | 27.6 G | 81.3% | 0.17 s |
YOLOX | 96.2% | 84.7% | 9.0 M | 26.8 G | 93.2% | 0.16 s |
YOLOv8 | 95.4% | 77.0% | 11.16 M | 28.8 G | 94.7% | 0.12 s |
YOLOv10 | 97% | 81.7% | 7.2 M | 21.6 G | 92% | 0.10 s |
RT-DETR | 90.8% | 70.6% | 32.81 M | 108 G | 86.7% | 0.22 s |
LCSC-UAVNet | 98.5% | 87.5% | 5.6 M | 16.3 G | 96.7% | 0.08 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, J.; Zhao, J.; Li, Z.; Yan, Y.; Yan, X.; Xu, F.; Li, F. LCSC-UAVNet: A High-Precision and Lightweight Model for Small-Object Identification and Detection in Maritime UAV Perspective. Drones 2025, 9, 100. https://doi.org/10.3390/drones9020100
Wang Y, Liu J, Zhao J, Li Z, Yan Y, Yan X, Xu F, Li F. LCSC-UAVNet: A High-Precision and Lightweight Model for Small-Object Identification and Detection in Maritime UAV Perspective. Drones. 2025; 9(2):100. https://doi.org/10.3390/drones9020100
Chicago/Turabian StyleWang, Yanjuan, Jiayue Liu, Jun Zhao, Zhibin Li, Yuxian Yan, Xiaohong Yan, Fengqiang Xu, and Fengqi Li. 2025. "LCSC-UAVNet: A High-Precision and Lightweight Model for Small-Object Identification and Detection in Maritime UAV Perspective" Drones 9, no. 2: 100. https://doi.org/10.3390/drones9020100
APA StyleWang, Y., Liu, J., Zhao, J., Li, Z., Yan, Y., Yan, X., Xu, F., & Li, F. (2025). LCSC-UAVNet: A High-Precision and Lightweight Model for Small-Object Identification and Detection in Maritime UAV Perspective. Drones, 9(2), 100. https://doi.org/10.3390/drones9020100