A Unified Framework for Cross-Domain Space Drone Pose Estimation Integrating Offline Domain Generalization with Online Domain Adaptation
Abstract
1. Introduction
- (1)
- We propose to integrate style transfer augmentation [24] and composition-aware domain randomization to synthesize diverse training images.
- (2)
- We propose to integrate a Domain Shifting Uncertainty (DSU) [25] estimation module with a multi-task learning architecture for bolstering the model’s generalization to unseen domains.
- (3)
- During online adaptation, we adopt SPNv2’s ODR [16] to fine-tune normalization layers using unlabeled real on-orbit image streams, achieving output distribution alignment.
2. Related Work
2.1. Vanilla Space Drone Pose Estimation from Monocular Images
2.2. Cross-Domain Space Drone Pose Estimation from Monocular Images
3. Preliminaries
4. Method
4.1. Augmentation
4.2. Domain Uncertainty Estimation
4.3. Online Unsupervised Domain Adaptation
5. Experiments
5.1. Datasets and Evaluation Metrics
5.2. Implementation Details
5.3. Comparative Analysis with State-of-the-Art
5.4. Temporal Stability and Efficiency Analysis
6. Ablation Studies
6.1. Effects of Data Augmentation
6.2. Effects of Different Insertion Locations and Their Combinations
6.3. Module Ablation in the Unified Framework
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pauly, L.; Rharbaoui, W.; Shneider, C.; Rathinam, A.; Gaudillière, V.; Aouada, D. A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects. Acta Astronaut. 2023, 212, 339–360. [Google Scholar] [CrossRef]
- Sajjad, N.; Mirshams, M.; Hein, A.M. Spaceborne and ground-based sensor collaboration: Advancing resident space objects’ orbit determination for space sustainability. Astrodynamics 2024, 8, 325–347. [Google Scholar] [CrossRef]
- Kisantal, M.; Sharma, S.; Park, T.H.; Izzo, D.; Märtens, M.; D’Amico, S. Satellite Pose Estimation Challenge: Dataset, Competition Design, and Results. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4083–4098. [Google Scholar] [CrossRef]
- Sharma, S.; Beierle, C.; D’Amico, S. Pose estimation for non-cooperative spacecraft rendezvous using convolutional neural networks. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–12. [Google Scholar]
- Hu, Y.; Speierer, S.; Jakob, W.; Fua, P.; Salzmann, M. Wide-depth-range 6d object pose estimation in space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15870–15879. [Google Scholar]
- Wang, Z.; Wang, J.; Yu, J.; Li, Z.; Yu, Q. High-accuracy real-time satellite pose estimation for in-orbit applications. Chin. J. Aeronaut. 2025, 38, 103458. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Li, Z.; Yu, Q. A comprehensive study on PnP-based pipeline for pose estimation of noncooperative satellite. Acta Astronaut. 2024, 224, 486–496. [Google Scholar] [CrossRef]
- Lotti, A.; Modenini, D.; Tortora, P.; Saponara, M.; Perino, M.A. Deep Learning for Real-Time Satellite Pose Estimation on Tensor Processing Units. J. Spacecr. Rocket. 2023, 60, 1034–1038. [Google Scholar] [CrossRef]
- Chen, B.; Cao, J.; Parra, A.; Chin, T.J. Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose Refinement. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 2816–2824. [Google Scholar]
- Liu, K.; Yu, Y. Revisiting the Domain Gap Issue in Non-cooperative Spacecraft Pose Tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 6864–6873. [Google Scholar]
- Park, T.H.; Märtens, M.; Jawaid, M.; Wang, Z.; Chen, B.; Chin, T.J.; Izzo, D.; D’Amico, S. Satellite Pose Estimation Competition 2021: Results and Analyses. Acta Astronaut. 2023, 204, 640–665. [Google Scholar] [CrossRef]
- Park, T.H.; Märtens, M.; Lecuyer, G.; Izzo, D.; D’Amico, S. SPEED+: Next-Generation Dataset for Spacecraft Pose Estimation across Domain Gap. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–15. [Google Scholar] [CrossRef]
- D’Amico, S.; Bodin, P.; Delpech, M.; Noteborn, R. PRISMA. In Distributed Space Missions for Earth System Monitoring; Springer: New York, NY, USA, 2013; pp. 599–637. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, M.; Guo, Y.; Li, Z.; Yu, Q. Bridging the Domain Gap in Satellite Pose Estimation: A Self-Training Approach Based on Geometrical Constraints. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 2500–2514. [Google Scholar] [CrossRef]
- Pérez-Villar, J.I.B.; García-Martín, Á.; Bescós, J.; Escudero-Viñolo, M. Spacecraft Pose Estimation: Robust 2-D and 3-D Structural Losses and Unsupervised Domain Adaptation by Intermodel Consensus. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2515–2525. [Google Scholar] [CrossRef]
- Park, T.H.; D’Amico, S. Robust multi-task learning and online refinement for spacecraft pose estimation across domain gap. Adv. Space Res. 2023, 73, 5726–5740. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, X.; Yao, M.; Xiong, Y.; Cui, H.; Fu, Y. PVSPE: A pyramid vision multitask transformer network for spacecraft pose estimation. Adv. Space Res. 2024, 74, 1327–1342. [Google Scholar] [CrossRef]
- Park, T.H.; Sharma, S.; D’Amico, S. Towards Robust Learning-Based Pose Estimation of Noncooperative Spacecraft. arXiv 2019, arXiv:1909.00392. [Google Scholar] [CrossRef]
- Legrand, A.; Detry, R.; De Vleeschouwer, C. Leveraging Neural Radiance Fields for Pose Estimation of an Unknown Space Object during Proximity Operations. In Proceedings of the IEEE International Conference on Space Robotics, Luxembourg, 24–27 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–10. [Google Scholar]
- Legrand, A.; Detry, R.; De Vleeschouwer, C. Domain Generalization for 6D Pose Estimation Through NeRF-based Image Synthesis. arXiv 2024, arXiv:2407.10762. [Google Scholar]
- Legrand, A.; Detry, R.; De Vleeschouwer, C. Domain Generalization for In-Orbit 6D Pose Estimation. arXiv 2024, arXiv:2406.11743. [Google Scholar] [CrossRef]
- Park, T.H.; D’Amico, S. Bridging Domain Gap for Flight-Ready Spaceborne Vision. arXiv 2024, arXiv:2409.11661. [Google Scholar] [CrossRef]
- Ulmer, M.; Durner, M.; Sundermeyer, M.; Stoiber, M.; Triebel, R. 6D Object Pose Estimation from Approximate 3D Models for Orbital Robotics. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 10749–10756. [Google Scholar]
- Jackson, P.T.; Abarghouei, A.A.; Bonner, S.; Breckon, T.P.; Obara, B. Style augmentation: Data augmentation via style randomization. In Proceedings of the CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019; Volume 6, pp. 10–11. [Google Scholar]
- Li, X.; Dai, Y.; Ge, Y.; Liu, J.; Shan, Y.; DUAN, L. Uncertainty Modeling for Out-of-Distribution Generalization. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022; pp. 1–17. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Yu, Y.; Guan, B.; Sun, X.; Li, Z. Self-calibration of cameras using affine correspondences and known relative rotation angle. Appl. Opt. 2021, 60, 10785–10794. [Google Scholar] [CrossRef]
- Yu, Y.; Guan, B.; Sun, X.; Li, Z.; Fraundorfer, F. Rotation alignment of camera-IMU system using a single affine correspondence. Appl. Opt. 2021, 60, 7455–7465. [Google Scholar] [CrossRef]
- Phisannupawong, T.; Kamsing, P.; Torteeka, P.; Channumsin, S.; Sawangwit, U.; Hematulin, W.; Jarawan, T.; Somjit, T.; Yooyen, S.; Delahaye, D.; et al. Vision-Based Spacecraft Pose Estimation via a Deep Convolutional Neural Network for Noncooperative Docking Operations. Aerospace 2020, 7, 126. [Google Scholar] [CrossRef]
- Proença, P.F.; Gao, Y. Deep Learning for Spacecraft Pose Estimation from Photorealistic Rendering. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6007–6013. [Google Scholar]
- Li, Y.; Yang, S.; Liu, P.; Zhang, S.; Wang, Y.; Wang, Z.; Yang, W.; Xia, S.T. SimCC: A Simple Coordinate Classification Perspective for Human Pose Estimation. In Computer Vision—ECCV 2022; Springer Nature: Cham, Switzerland, 2022; pp. 89–106. [Google Scholar]
- Li, Q.; Zhang, Z.; Xiao, F.; Zhang, F.; Bhanu, B. Dite-HRNet: Dynamic lightweight high-resolution network for human pose estimation. arXiv 2022, arXiv:2204.10762. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 139–144. [Google Scholar]
- Pérez-Villar, J.I.B.; García-Martín, Á.; Bescós, J. Spacecraft pose estimation based on unsupervised domain adaptation and on a 3d-guided loss combination. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 37–52. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, R.; Du, D.; Cao, S.; Qi, N. Feature-aided pose estimation approach based on variational auto-encoder structure for spacecrafts. Chin. J. Aeronaut. 2024, 37, 329–341. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography—ScienceDirect. Readings Comput. Vis. 1987, 726–740. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1501–1510. [Google Scholar]
- Park, T.H.; D’Amico, S. Adaptive Neural Network-Based Unscented Kalman Filter for Robust Pose Tracking of Noncooperative Spacecraft. J. Guid. Control. Dyn. 2023, 46, 1671–1688. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Zhang, P.; Wu, D.; Baoyin, H. Real-time hybrid method for maneuver detection and estimation of non-cooperative space targets. Astrodynamics 2024, 8, 437–453. [Google Scholar] [CrossRef]











| Method | Param | Lightbox | Sunlamp | |||||
|---|---|---|---|---|---|---|---|---|
| [°] | [] | [°] | [] | |||||
| SPNv3 [22] | 86.3 M | 2.03 | 1.2 | 0.05 | 3.4 | 1.5 | 0.07 | 0.06 |
| Ref. [23] | 88.6 M | 1.75 | 8.5 | 0.04 | 2.66 | 1.3 | 0.06 | 0.05 |
| SPN [4] | / | 65.12 | 45.0 | 1.21 | 92.95 | 65.0 | 1.73 | 1.47 |
| KRN [18] | / | 33.62 | 95.0 | 0.74 | 65.37 | 204.0 | 1.47 | 1.11 |
| Ref. [19] | / | 7.20 | 20.0 | 0.16 | 16.9 | 29.0 | 0.34 | 0.25 |
| PVSPE [17] | / | 4.81 | / | 0.10 | 8.94 | / | 0.18 | 0.14 |
| Ref. [19] | / | 3.66 | 14.1 | 0.09 | 7.82 | 21.4 | 0.17 | 0.13 |
| Ref. [21] | / | 4.32 | 9.0 | 0.09 | 6.94 | 14.0 | 0.14 | 0.12 |
| Ref. [10] | / | 6.68 | 17.0 | 0.15 | 5.51 | 22.0 | 0.13 | 0.14 |
| SPNv2 [16] | 12.0 M | 5.62 | 14.2 | 0.12 | 9.60 | 18.2 | 0.20 | 0.16 |
| UF-SPE | 12.9 M | 5.71 | 15.2 | 0.12 | 6.62 | 13.4 | 0.14 | 0.13 |
| UF-SPE ※ | 12.9 M | 3.97 | 11.2 | 0.09 | 5.69 | 11.0 | 0.12 | 0.10 |
| Training | ODR | Inferring | Pose solving |
|---|---|---|---|
| 255 | 93 | 24 | 31 |
| Params (M) | Flops (G) | Time (ms) |
|---|---|---|
| 12.91 | 28.04 | 55 |
| Lightbox | Sunlamp | ||||||
|---|---|---|---|---|---|---|---|
| [°] | [] | [°] | [] | ||||
| base | 8.82 | 20.9 | 0.18 | 25.64 | 56.8 | 0.53 | 0.36 |
| +Style | 8.59 | 21.9 | 0.18 | 11.08 | 17.7 | 0.22 | 0.20 |
| +CADR | 6.82 | 18.7 | 0.15 | 7.75 | 15.1 | 0.16 | 0.16 |
| Lightbox | Sunlamp | ||||||
|---|---|---|---|---|---|---|---|
| [°] | [] | [°] | [] | ||||
| base | 8.82 | 20.9 | 0.18 | 25.64 | 56.8 | 0.53 | 0.36 |
| +Aug | 6.82 | 18.7 | 0.15 | 7.75 | 15.1 | 0.16 | 0.16 |
| +Unc | 5.71 | 15.2 | 0.12 | 6.62 | 13.4 | 0.14 | 0.13 |
| +Odr | 3.97 | 11.2 | 0.09 | 5.69 | 11.0 | 0.12 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, Z.; Yu, Q. A Unified Framework for Cross-Domain Space Drone Pose Estimation Integrating Offline Domain Generalization with Online Domain Adaptation. Drones 2025, 9, 774. https://doi.org/10.3390/drones9110774
Yu Y, Li Z, Yu Q. A Unified Framework for Cross-Domain Space Drone Pose Estimation Integrating Offline Domain Generalization with Online Domain Adaptation. Drones. 2025; 9(11):774. https://doi.org/10.3390/drones9110774
Chicago/Turabian StyleYu, Yingjian, Zhang Li, and Qifeng Yu. 2025. "A Unified Framework for Cross-Domain Space Drone Pose Estimation Integrating Offline Domain Generalization with Online Domain Adaptation" Drones 9, no. 11: 774. https://doi.org/10.3390/drones9110774
APA StyleYu, Y., Li, Z., & Yu, Q. (2025). A Unified Framework for Cross-Domain Space Drone Pose Estimation Integrating Offline Domain Generalization with Online Domain Adaptation. Drones, 9(11), 774. https://doi.org/10.3390/drones9110774

