UAV IoT Sensing and Networking
1. Introduction
2. The Present Special Issue
3. Future Perspectives
Acknowledgments
Conflicts of Interest
List of Contributions
- Wang, D.; Yuan, L.; Pang, L.; Xu, Q.; He, Y. Age of Information-Inspired Data Collection and Secure Upload Assisted by the Unmanned Aerial Vehicle and Reconfigurable Intelligent Surface in Maritime Wireless Sensor Networks. Drones 2024, 8, 267.
- Lai, H.; Li, D.; Xu, F.; Wang, X.; Ning, J.; Hu, Y.; Duo, B. Optimization of Full-Duplex UAV Secure Communication with the Aid of RIS. Drones 2023, 7, 591.
- Custodio, J.; Abeledo, H. Drone-Based Environmental Emergency Response in the Brazilian Amazon. Drones 2023, 7, 554.
- Kim, B.; Han, J.; Jang, J.; Jung, J.; Heo, J.; Min, H.; Rhee, D.S. A Dynamic Checkpoint Interval Decision Algorithm for Live Migration-Based Drone-Recovery System. Drones 2023, 7, 286.
- Li, F.; Luo, J.; Qiao, Y.; Li, Y. Joint UAV deployment and task offloading scheme for multi-UAV-assisted edge computing. Drones 2023, 7, 284.
- Amodu, O.A.; Nordin, R.; Jarray, C.; Bukar, U.A.; Raja Mahmood, R.A.; Othman, M. A survey on the design aspects and opportunities in age-aware uav-aided data collection for sensor networks and internet of things applications. Drones 2023, 7, 260.
- Bacanli, S.S.; Elgeldawi, E.; Turgut, B.; Turgut, D. UAV charging station placement in opportunistic networks. Drones 2022, 6, 293.
References
- Palmieri, N.; Yang, X.S.; De Rango, F.; Santamaria, A.F. Self-adaptive decision-making mechanisms to balance the execution of multiple tasks for a multi-robots team. Neurocomputing 2018, 306, 17–36. [Google Scholar] [CrossRef]
- Akter, R.; Doan, V.S.; Zainudin, A.; Kim, D.S. An explainable multi-task learning approach for rf-based uav surveillance systems. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; IEEE: New York, NY, USA, 2022; pp. 145–149. [Google Scholar]
- Naseer, A.; Shmoon, M.; Shakeel, T.; Ur Rehman, S.; Ahmad, A.; Gruhn, V. A Systematic Literature Review of the IoT in Agriculture-Global Adoption, Innovations, Security Privacy Challenges. IEEE Access 2024, 12, 60986–61021. [Google Scholar] [CrossRef]
- De Rango, F.; Potrino, G.; Tropea, M.; Santamaria, A.F.; Fazio, P. Scalable and ligthway bio-inspired coordination protocol for FANET in precision agriculture applications. Comput. Electr. Eng. 2019, 74, 305–318. [Google Scholar] [CrossRef]
- Ray, P.P.; Mukherjee, M.; Shu, L. Internet of things for disaster management: State-of-the-art and prospects. IEEE Access 2017, 5, 18818–18835. [Google Scholar] [CrossRef]
- Nikhil, N.; Shreyas, S.M.; Vyshnavi, G.; Yadav, S. Unmanned aerial vehicles (UAV) in disaster management applications. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; IEEE: New York, NY, USA, 2020; pp. 140–148. [Google Scholar]
- Li, T.; Ota, K.; Wang, T.; Li, X.; Cai, Z.; Liu, A. Optimizing the coverage via the UAVs with lower costs for information-centric Internet of Things. IEEE Access 2019, 7, 15292–15309. [Google Scholar] [CrossRef]
- Dong, P.; Wang, X.; Wang, S.; Wang, Y.; Ning, Z.; Obaidat, M.S. Internet of UAVs based remote health monitoring: An online eHealth system. IEEE Wirel. Commun. 2021, 28, 15–21. [Google Scholar] [CrossRef]
- Majid, M.I.; Chen, Y.; Mahfooz, O.; Ahmed, W. Uav-based smart environmental monitoring. In Employing Recent Technologies for Improved Digital Governance; IGI Global: Hershey, PA, USA, 2020; pp. 317–335. [Google Scholar]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Santamaria, A.F.; Raimondo, P.; Tropea, M.; De Rango, F.; Aiello, C. An IoT surveillance system based on a decentralised architecture. Sensors 2019, 19, 1469. [Google Scholar] [CrossRef] [PubMed]
- Fazio, P.; Sottile, C.; Santamaria, A.F.; Tropea, M. Vehicular networking enhancement and multi-channel routing optimization, based on multi-objective metric and minimum spanning tree. Adv. Electr. Electron. Eng. 2013, 11, 349–356. [Google Scholar] [CrossRef]
- Spina, M.G.; De Rango, F. Lightweight, dynamic and energy efficient security mechanism for constrained IoT devices using coap. In Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2023; IEEE: New York, NY, USA, 2023; pp. 1123–1128. [Google Scholar]
- De Rango, F.; Stumpo, D. Supporting path planning in LoRa-based UAVs for dynamic coverage for IoT devices. In Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2023; IEEE: New York, NY, USA, 2023; pp. 337–340. [Google Scholar]
- Wei, Z.; Zhu, M.; Zhang, N.; Wang, L.; Zou, Y.; Meng, Z.; Wu, H.; Feng, Z. UAV-assisted data collection for Internet of Things: A survey. IEEE Internet Things J. 2022, 9, 15460–15483. [Google Scholar] [CrossRef]
- Van Mulders, J.; Boeckx, S.; Cappelle, J.; Van der Perre, L.; De Strycker, L. UAV-based solution for extending the lifetime of IoT devices: Efficiency, design and sustainability. Front. Commun. Netw. 2024, 5, 1341081. [Google Scholar] [CrossRef]
- Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun. Surv. Tutor. 2014, 17, 27–51. [Google Scholar] [CrossRef]
- Schwarzmann, S.; Civelek, T.E.; Iera, A.; Corujo, D.; Karetsos, G.T.; Guerzoni, R.; Abboud, O.; Valenzuela, A.M.; Trivisonno, R.; Spina, M.G.; et al. Native Support of AI Applications in 6G Mobile Networks Via an Intelligent User Plane. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 21–24 April 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tropea, M.; Lakas, A.; Sarigiannidis, P. UAV IoT Sensing and Networking. Drones 2024, 8, 466. https://doi.org/10.3390/drones8090466
Tropea M, Lakas A, Sarigiannidis P. UAV IoT Sensing and Networking. Drones. 2024; 8(9):466. https://doi.org/10.3390/drones8090466
Chicago/Turabian StyleTropea, Mauro, Abderrahmane Lakas, and Panagiotis Sarigiannidis. 2024. "UAV IoT Sensing and Networking" Drones 8, no. 9: 466. https://doi.org/10.3390/drones8090466
APA StyleTropea, M., Lakas, A., & Sarigiannidis, P. (2024). UAV IoT Sensing and Networking. Drones, 8(9), 466. https://doi.org/10.3390/drones8090466