A Two-Step Controller for Vision-Based Autonomous Landing of a Multirotor with a Gimbal Camera
Abstract
1. Introduction
2. Materials and Methods
2.1. Notation
- 1.
- for all .
- 2.
- for all and .
2.2. The First Step: Horizontal Approaching
2.3. The Second Step: Vertical Approaching
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UAV | Unmanned aerial vehicle |
VBAL | Vision-based autonomous landing |
IMU | Inertial measurement unit |
GPS | Global positioning system |
LiDAR | Light detection and ranging |
References
- Tomic, T.; Schmid, K.; Lutz, P.; Domel, A.; Kassecker, M.; Mair, E.; Grixa, I.L.; Ruess, F.; Suppa, M.; Burschka, D. Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue. IEEE Robot. Autom. Mag. 2012, 19, 46–56. [Google Scholar] [CrossRef]
- Lu, Y.; Xue, Z.; Xia, G.S.; Zhang, L. A survey on vision-based UAV navigation. Geo-Spat. Inf. Sci. 2018, 21, 21–32. [Google Scholar] [CrossRef]
- Kanellakis, C.; Nikolakopoulos, G. Survey on computer vision for UAVs: Current developments and trends. J. Intell. Robot. Syst. 2017, 87, 141–168. [Google Scholar] [CrossRef]
- Kong, W.; Zhou, D.; Zhang, D.; Zhang, J. Vision-based autonomous landing system for unmanned aerial vehicle: A survey. In Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), Beijing, China, 28–29 September 2014; pp. 1–8. [Google Scholar]
- Kumar, A. Real-time performance comparison of vision-based autonomous landing of quadcopter on a ground moving target. IETE J. Res. 2023, 69, 5455–5472. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, H.; Wang, J.; Chen, S.; Chen, W.; Liang, X. Image-based visual servoing of a quadrotor using virtual camera approach. IEEE/ASME Trans. Mechatron. 2016, 22, 972–982. [Google Scholar] [CrossRef]
- Keipour, A.; Pereira, G.A.; Bonatti, R.; Garg, R.; Rastogi, P.; Dubey, G.; Scherer, S. Visual Servoing Approach to Autonomous UAV Landing on a Moving Vehicle. Sensors 2022, 22, 6549. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Ryan, T.; Kim, H.J. Autonomous landing of a VTOL UAV on a moving platform using image-based visual servoing. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), St Paul, MN, USA, 14–18 May 2012; pp. 971–976. [Google Scholar]
- Li, J.; Xie, H.; Low, K.H.; Yong, J.; Li, B. Image-based visual servoing of rotorcrafts to planar visual targets of arbitrary orientation. IEEE Robot. Autom. Lett. 2021, 6, 7861–7868. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, H.; Wang, J.; Zhang, X.; Chen, W. Toward visibility guaranteed visual servoing control of quadrotor UAVs. IEEE/ASME Trans. Mechatron. 2019, 24, 1087–1095. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, Y.; Sheng, H. Robust nonlinear model predictive control based visual servoing of quadrotor UAVs. IEEE/ASME Trans. Mechatron. 2021, 26, 700–708. [Google Scholar] [CrossRef]
- Fu, G.; Chu, H.; Liu, L.; Fang, L.; Zhu, X. Deep reinforcement learning for the visual servoing control of uavs with fov constraint. Drones 2023, 7, 375. [Google Scholar] [CrossRef]
- Hansen, J.G.; de Figueiredo, R.P. Active Object Detection and Tracking Using Gimbal Mechanisms for Autonomous Drone Applications. Drones 2024, 8, 55. [Google Scholar] [CrossRef]
- Jiang, T.; Lin, D.; Song, T. Vision-based autonomous landing of a quadrotor using a gimbaled camera. Proc. Inst. Mech. Eng. Part J. Aerosp. Eng. 2019, 233, 5093–5106. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Ma, C.; Li, J.; Zhang, S. Real-time visual tracking of moving targets using a low-cost unmanned aerial vehicle with a 3-axis stabilized gimbal system. Appl. Sci. 2020, 10, 5064. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Zhou, Y.; Liu, Z.; Shen, L. Online predictive visual servo control for constrained target tracking of fixed-wing unmanned aerial vehicles. Drones 2024, 8, 136. [Google Scholar] [CrossRef]
- Cabecinhas, D.; Brás, S.; Cunha, R.; Silvestre, C.; Oliveira, P. Integrated visual servoing solution to quadrotor stabilization and attitude estimation using a pan and tilt camera. IEEE Trans. Control Syst. Technol. 2017, 27, 14–29. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Chang, D.E. A New Bundle Picture for the Drone. IEEE Trans. Autom. Control 2023, 68, 4218–4224. [Google Scholar] [CrossRef]
- Jabbari, H.; Oriolo, G.; Bolandi, H. An adaptive scheme for image-based visual servoing of an underactuated UAV. Int. J. Robot. Autom. 2014, 29, 92–104. [Google Scholar]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5. [Google Scholar]
- Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 4193–4198. [Google Scholar]
Parameter: | |
---|---|
Simulation | (205.47, 205.47, 320.50, 180.50) |
Real experiment | (207.86, 205.42, 217.39, 112.67) |
Test 1 | Test 2 | Test 3 | |
---|---|---|---|
Initial position () | |||
Success rate (%) | 100 | 100 | 100 |
Landing position error () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.; Park, J.-H.; Chang, D.E. A Two-Step Controller for Vision-Based Autonomous Landing of a Multirotor with a Gimbal Camera. Drones 2024, 8, 389. https://doi.org/10.3390/drones8080389
Yoo S, Park J-H, Chang DE. A Two-Step Controller for Vision-Based Autonomous Landing of a Multirotor with a Gimbal Camera. Drones. 2024; 8(8):389. https://doi.org/10.3390/drones8080389
Chicago/Turabian StyleYoo, Sangbaek, Jae-Hyeon Park, and Dong Eui Chang. 2024. "A Two-Step Controller for Vision-Based Autonomous Landing of a Multirotor with a Gimbal Camera" Drones 8, no. 8: 389. https://doi.org/10.3390/drones8080389
APA StyleYoo, S., Park, J.-H., & Chang, D. E. (2024). A Two-Step Controller for Vision-Based Autonomous Landing of a Multirotor with a Gimbal Camera. Drones, 8(8), 389. https://doi.org/10.3390/drones8080389