Author Contributions
Conceptualization, J.G.Q.P.; methodology, J.G.Q.P.; software, J.G.Q.P.; validation, J.G.Q.P.; formal analysis, J.G.Q.P.; investigation, J.G.Q.P.; resources, E.K. and O.L.; data curation, J.G.Q.P.; writing—original draft preparation, J.G.Q.P.; writing—review and editing, V.S., E.M., E.K., and O.L.; visualization, V.S. and E.K.; supervision, V.S., E.M., E.K., and O.L.; project administration, J.G.Q.P.; funding acquisition, E.M. and E.K. All authors have read and agreed to the published version of the manuscript.
Figure 1.
Architecture of the GAN used to create new airfoils.
Figure 1.
Architecture of the GAN used to create new airfoils.
Figure 2.
(a) Dimensions of the control volume, c is the chord length of the airfoil; (b) general view of the mesh; (c) grouping of surfaces.
Figure 2.
(a) Dimensions of the control volume, c is the chord length of the airfoil; (b) general view of the mesh; (c) grouping of surfaces.
Figure 3.
Aerodynamic coefficients of the NACA 0012 airfoil.
Figure 3.
Aerodynamic coefficients of the NACA 0012 airfoil.
Figure 4.
Creation of the output data (output images) representing the aerodynamic coefficients of the airfoils (red for cl vs. α, green for cd vs. α and blue for cl1.5/cd vs. α).
Figure 4.
Creation of the output data (output images) representing the aerodynamic coefficients of the airfoils (red for cl vs. α, green for cd vs. α and blue for cl1.5/cd vs. α).
Figure 5.
Methodology of design of a neural network to predict aerodynamic coefficients [
21].
Figure 5.
Methodology of design of a neural network to predict aerodynamic coefficients [
21].
Figure 6.
Final architecture of the neural network AZTLI-NN used to predict aerodynamic coefficients of the airfoils.
Figure 6.
Final architecture of the neural network AZTLI-NN used to predict aerodynamic coefficients of the airfoils.
Figure 7.
General architecture of a VAE.
Figure 7.
General architecture of a VAE.
Figure 8.
Architecture of the encoder.
Figure 8.
Architecture of the encoder.
Figure 9.
Architecture of the decoder.
Figure 9.
Architecture of the decoder.
Figure 10.
Airfoils reconstructed using the CST method (black), original coordinates are shown in green. The blue graph indicates the local deviations on the upper surface, while the red one indicates the local deviations on the lower surface. (a) Eppler 407 airfoil, (b) FX 61140 airfoil, (c) NACA 23016 airfoil, and (d) TSAGI 12 airfoil.
Figure 10.
Airfoils reconstructed using the CST method (black), original coordinates are shown in green. The blue graph indicates the local deviations on the upper surface, while the red one indicates the local deviations on the lower surface. (a) Eppler 407 airfoil, (b) FX 61140 airfoil, (c) NACA 23016 airfoil, and (d) TSAGI 12 airfoil.
Figure 11.
Sample of airfoils obtained with a GAN using information from real airfoils.
Figure 11.
Sample of airfoils obtained with a GAN using information from real airfoils.
Figure 12.
Reconstruction of the graph of cl vs. α by PCA using different numbers of PCs.
Figure 12.
Reconstruction of the graph of cl vs. α by PCA using different numbers of PCs.
Figure 13.
Reconstruction of the graph of cd vs. α by PCA using different numbers of PCs.
Figure 13.
Reconstruction of the graph of cd vs. α by PCA using different numbers of PCs.
Figure 14.
Reconstruction of the graph of cl1.5/cd vs. α by PCA using different numbers of PCs.
Figure 14.
Reconstruction of the graph of cl1.5/cd vs. α by PCA using different numbers of PCs.
Figure 15.
Statistical distribution of MAE in the reconstruction of graphs with a VAE. Stage of training.
Figure 15.
Statistical distribution of MAE in the reconstruction of graphs with a VAE. Stage of training.
Figure 16.
Statistical distribution of MAE in the reconstruction of graphs with a VAE. Stage of testing.
Figure 16.
Statistical distribution of MAE in the reconstruction of graphs with a VAE. Stage of testing.
Figure 17.
Example of graph reconstruction of the aerodynamic coefficients of an airfoil by using a VAE.
Figure 17.
Example of graph reconstruction of the aerodynamic coefficients of an airfoil by using a VAE.
Figure 18.
Analysis of the performance in the reading of aerodynamic coefficients in the graphs reconstructed by the VAE.
Figure 18.
Analysis of the performance in the reading of aerodynamic coefficients in the graphs reconstructed by the VAE.
Figure 19.
The Architecture of MLP.
Figure 19.
The Architecture of MLP.
Figure 20.
Performance analysis of prediction of aerodynamic coefficients using AZTLI-NN (database size = 500).
Figure 20.
Performance analysis of prediction of aerodynamic coefficients using AZTLI-NN (database size = 500).
Figure 21.
Performance analysis of prediction of aerodynamic coefficients using AZTLI-NN (database size = 1000).
Figure 21.
Performance analysis of prediction of aerodynamic coefficients using AZTLI-NN (database size = 1000).
Figure 22.
Performance analysis of prediction of aerodynamic coefficients using AZTLI-NN (database size = 1500).
Figure 22.
Performance analysis of prediction of aerodynamic coefficients using AZTLI-NN (database size = 1500).
Figure 23.
Aerodynamic coefficients of the FX 66-S-161 airfoil obtained with a laminar wind tunnel, with OpenFOAM, and with AZTLI-NN.
Figure 23.
Aerodynamic coefficients of the FX 66-S-161 airfoil obtained with a laminar wind tunnel, with OpenFOAM, and with AZTLI-NN.
Figure 24.
Better airfoils obtained in the optimization tests. Red—standard DE, green—L-SHADE, blue—CAPR-SHADE.
Figure 24.
Better airfoils obtained in the optimization tests. Red—standard DE, green—L-SHADE, blue—CAPR-SHADE.
Table 1.
Generator (G).
Layer | Number of Neurons | Activation Function |
---|
Input layer, IL | 5 | ————————— |
Hidden layer 1, HL1 | 16 | Leaky RELU |
Hidden layer 2, HL2 | 32 | Leaky RELU |
Output layer, OL | 14 | Hyperbolic tangent |
Table 2.
Discriminator (D).
Table 2.
Discriminator (D).
Layer | Number of Neurons | Activation Function |
---|
Input layer, IL | 14 | ————————— |
Hidden layer 1, HL1 | 32 | Leaky RELU |
Hidden layer 2, HL2 | 16 | Leaky RELU |
Output layer, OL | 1 | Sigmoid |
Table 3.
Boundary conditions.
Table 3.
Boundary conditions.
| airfoil | inlet | outlet | frontBack | internalField |
---|
U [m/s] | noSlip | fixedValue(U∞) | fixedValue(U∞) | empty | fixedValue(U∞) |
p [m2/s2] | zeroGradient | zeroGradient | fixedValue(0) | empty | fixedValue(0) |
k [m2/s2] | kqRWallFunction(k0) | fixedValue(k0) | fixedValue(k0) | empty | fixedValue(k0) |
ω [1/s] | omegaWallFunction(ω0) | fixedValue(ω0) | fixedValue(ω0) | empty | fixedValue(ω0) |
νt [m2/s] | nutUWallFunction(0) | fixedValue(0) | fixedValue(0) | empty | fixedValue(0) |
Table 4.
List of schemes used [
33,
36].
Table 4.
List of schemes used [
33,
36].
Type of Scheme | OpenFOAM Scheme |
---|
Temporary derivatives | steadyState |
Gradients | Gauss linear |
Divergence(φ, U) | bounded Gauss linearUpwind limited |
Divergence(φ, k) | bounded Gauss upwind |
Divergence(φ, ω) | bounded Gauss upwind |
Laplacians | Gauss linear corrected |
Interpolation | linear |
Table 5.
Characteristics of the simulated flows in the NACA 0012 airfoil.
Table 5.
Characteristics of the simulated flows in the NACA 0012 airfoil.
Test | M [Re] |
---|
1 | 0.15 [2 × 106] |
2 | 0.15 [4 × 106] |
3 | 0.15 [6 × 106] |
4 | 0.30 [4 × 106] |
5 | 0.30 [6 × 106] |
Table 6.
CST parameters for Eppler 407, FX 61140, NACA 23106, and TSAGI 12 airfoils.
Table 6.
CST parameters for Eppler 407, FX 61140, NACA 23106, and TSAGI 12 airfoils.
Parameter | Eppler 407 | FX 61140 | NACA 23016 | TSAGI 12 |
---|
Au,0 | 0.1557 | 0.1687 | 0.3307 | 0.1319 |
Au,1 | 0.2776 | 0.2957 | 0.1862 | 0.2991 |
Au,2 | 0.1469 | 0.2247 | 0.3784 | 0.0794 |
Au,3 | 0.3661 | 0.2535 | 0.0391 | 0.3582 |
Au,4 | 0.1991 | 0.2321 | 0.4020 | 0.0557 |
Au,5 | 0.4254 | 0.1675 | 0.0834 | 0.2269 |
Au,6 | 0.3627 | 0.3335 | 0.2984 | 0.1205 |
Al,0 | −0.0995 | −0.0753 | −0.1474 | −0.1063 |
Al,1 | −0.1840 | −0.1723 | −0.1653 | −0.1304 |
Al,2 | −0.0175 | −0.0108 | −0.1841 | −0.0305 |
Al,3 | −0.2888 | −0.2452 | −0.1526 | −0.1880 |
Al,4 | −0.0698 | −0.1176 | −0.1859 | −0.0631 |
Al,5 | 0.1000 | 0.1000 | −0.1357 | −0.1761 |
Al,6 | 0.1000 | 0.1000 | −0.2118 | −0.1959 |
Table 7.
Design intervals of the parameters of the CST method.
Table 7.
Design intervals of the parameters of the CST method.
Parameter | Design Interval | Parameter | Design Interval |
---|
Au,0 | [0.07, 0.35] | Al,0 | [−0.30, −0.05] |
Au,1 | [0.04, 0.55] | Al,1 | [−0.26, 0.05] |
Au,2 | [0.00, 0.45] | Al,2 | [−0.36, 0.05] |
Au,3 | [0.00, 0.55] | Al,3 | [−0.47, 0.05] |
Au,4 | [0.00, 0.55] | Al,4 | [−0.47, 0.05] |
Au,5 | [0.00, 0.50] | Al,5 | [−0.42, 0.10] |
Au,6 | [−0.01, 0.50] | Al,6 | [−0.28, 0.10] |
Table 8.
Average values of MAE in the reconstruction of graphs in the VAE testing stage. Best results highlighted in green.
Table 8.
Average values of MAE in the reconstruction of graphs in the VAE testing stage. Best results highlighted in green.
Size of z | MAE | MAEavg |
---|
cl | cd | cl1.5/cd |
---|
9 | 0.00293 | 0.00270 | 0.00345 | 0.00303 |
8 | 0.00310 | 0.00281 | 0.00414 | 0.00337 |
7 | 0.00307 | 0.00262 | 0.00383 | 0.00317 |
6 | 0.00293 | 0.00246 | 0.00371 | 0.00303 |
5 | 0.00317 | 0.00295 | 0.00413 | 0.00341 |
Table 9.
Parameters and their design ranges to optimize MLP hyperparameters.
Table 9.
Parameters and their design ranges to optimize MLP hyperparameters.
η | Design Ranges |
---|
n1 | [128, 512] |
n2 |
n3 |
a1 | {0, 1, 2} * |
a2 |
a3 |
Table 10.
Performance analysis of the prediction of aerodynamic coefficients of different neural networks (values of R2).
Table 10.
Performance analysis of the prediction of aerodynamic coefficients of different neural networks (values of R2).
Neural Network | cl | cd |
---|
AZTLI-NN (1000 data) | 0.9933 | 0.9764 |
MLP (1680 data) [51] | 0.9997 | 0.9092 |
DFNN (1100 data) [58] | 0.9992 | 0.9735 |
Table 11.
Repeatability analysis of the values obtained by the standard DE algorithm. Best result highlighted in green.
Table 11.
Repeatability analysis of the values obtained by the standard DE algorithm. Best result highlighted in green.
NP0 | Test | cl1.5/cd | α [°] | ytmax | cd | t [s] |
---|
10|ξ| | 1 | 41.9608 | 3.29 | 0.1158 | 0.0108 | 42.639 |
2 | 41.9608 | 3.29 | 0.1136 | 0.0108 | 42.242 |
3 | 41.9608 | 3.14 | 0.1121 | 0.0108 | 41.810 |
4 | 41.9608 | 2.98 | 0.1106 | 0.0108 | 42.062 |
5 | 41.9608 | 3.14 | 0.1152 | 0.0108 | 42.429 |
20|ξ| | 1 | 41.9608 | 2.35 | 0.1190 | 0.0108 | 68.823 |
2 | 41.9608 | 3.29 | 0.1161 | 0.0108 | 68.533 |
3 | 41.9608 | 2.98 | 0.1158 | 0.0108 | 68.446 |
4 | 42.7451 | 3.45 | 0.1128 | 0.0106 | 68.452 |
5 | 41.9608 | 3.37 | 0.1120 | 0.0108 | 68.349 |
50|ξ| | 1 | 42.3529 | 2.11 | 0.1167 | 0.0107 | 148.690 |
2 | 42.3529 | 2.19 | 0.1133 | 0.0107 | 149.058 |
3 | 42.3529 | 2.11 | 0.1133 | 0.0107 | 148.331 |
4 | 42.3529 | 3.37 | 0.1118 | 0.0107 | 148.927 |
5 | 42.3529 | 3.68 | 0.1143 | 0.0107 | 149.163 |
Table 12.
Repeatability analysis of the values obtained by the L-SHADE algorithm. Best result highlighted in green.
Table 12.
Repeatability analysis of the values obtained by the L-SHADE algorithm. Best result highlighted in green.
NP0 | Test | cl1.5/cd | α [°] | ytmax | cd | t [s] |
---|
10|ξ| | 1 | 42.7451 | 2.19 | 0.1103 | 0.0106 | 44.395 |
2 | 42.7451 | 3.76 | 0.1130 | 0.0106 | 37.701 |
| 3 | 42.3529 | 3.06 | 0.1120 | 0.0107 | 37.587 |
| 4 | 42.3529 | 3.06 | 0.1109 | 0.0107 | 37.895 |
5 | 42.3529 | 3.37 | 0.1107 | 0.0107 | 37.680 |
20|ξ| | 1 | 42.3529 | 2.74 | 0.1104 | 0.0107 | 51.367 |
2 | 42.3529 | 3.05 | 0.1108 | 0.0107 | 50.909 |
3 | 42.7451 | 3.74 | 0.1122 | 0.0106 | 50.919 |
4 | 42.3529 | 3.68 | 0.1101 | 0.0107 | 51.196 |
5 | 42.3529 | 3.69 | 0.1137 | 0.0107 | 51.199 |
50|ξ| | 1 | 42.3529 | 3.52 | 0.1112 | 0.0107 | 65.479 |
2 | 42.7451 | 3.76 | 0.1117 | 0.0106 | 65.866 |
3 | 42.3529 | 3.06 | 0.1104 | 0.0107 | 65.972 |
4 | 42.7451 | 3.76 | 0.1103 | 0.0106 | 66.262 |
5 | 42.7451 | 3.76 | 0.1121 | 0.0106 | 65.777 |
Table 13.
Repeatability analysis of the values obtained by the CAPR-SHADE algorithm. Best result highlighted in green.
Table 13.
Repeatability analysis of the values obtained by the CAPR-SHADE algorithm. Best result highlighted in green.
NP0 | Test | cl1.5/cd | α [°] | ytmax | cd | t [s] |
---|
10|ξ| | 1 | 42.3529 | 3.84 | 0.1132 | 0.0107 | 40.162 |
2 | 42.3529 | 3.84 | 0.1126 | 0.0107 | 38.865 |
3 | 42.7451 | 3.76 | 0.1104 | 0.0106 | 40.503 |
4 | 42.3529 | 3.84 | 0.1108 | 0.0107 | 38.800 |
5 | 42.7451 | 3.76 | 0.1109 | 0.0106 | 38.135 |
20|ξ| | 1 | 42.3529 | 3.68 | 0.1108 | 0.0107 | 60.426 |
2 | 42.3529 | 3.84 | 0.1149 | 0.0107 | 63.133 |
3 | 42.7451 | 3.45 | 0.1105 | 0.0106 | 61.141 |
4 | 42.7451 | 3.45 | 0.1101 | 0.0106 | 61.306 |
5 | 42.7451 | 3.45 | 0.1102 | 0.0106 | 64.510 |
50|ξ| | 1 | 42.3529 | 2.19 | 0.1135 | 0.0107 | 128.966 |
2 | 42.7451 | 3.76 | 0.1107 | 0.0106 | 128.897 |
3 | 42.7451 | 3.76 | 0.1127 | 0.0106 | 123.793 |
4 | 42.7451 | 3.76 | 0.1107 | 0.0106 | 125.845 |
5 | 42.7451 | 3.76 | 0.1103 | 0.0106 | 124.743 |
Table 14.
CST parameters of the optimal airfoils obtained by different evolutionary algorithms.
Table 14.
CST parameters of the optimal airfoils obtained by different evolutionary algorithms.
Parameter | Standard DE | L-SHADE | CAPR-SHADE |
---|
Au,0 | 0.1537 | 0.1537 | 0.1537 |
Au,1 | 0.3456 | 0.2438 | 0.2302 |
Au,2 | 0.0916 | 0.1282 | 0.0875 |
Au,3 | 0.1100 | 0.1158 | 0.3075 |
Au,4 | 0.1133 | 0.1100 | 0.1100 |
Au,5 | 0.1247 | 0.1000 | 0.1000 |
Au,6 | 0.0947 | 0.0925 | 0.1109 |
Al,0 | −0.1238 | −0.1237 | −0.1235 |
Al,1 | −0.0791 | −0.0791 | −0.0475 |
Al,2 | −0.1368 | −0.1368 | −0.1841 |
Al,3 | −0.0787 | −0.0787 | −0.0787 |
Al,4 | −0.0445 | −0.0422 | −0.0422 |
Al,5 | −0.0126 | −0.0126 | −0.0126 |
Al,6 | 0.0054 | 0.0040 | 0.0054 |
Table 15.
Comparison of the aerodynamic coefficients of optimal airfoils obtained using OpenFOAM and AZTLI-NN.
Table 15.
Comparison of the aerodynamic coefficients of optimal airfoils obtained using OpenFOAM and AZTLI-NN.
Algorithm | Method | α [°] | cl | cd | cl1.5/cd |
---|
DE | OpenFOAM | 3.45 | 0.5677 | 0.0106 | 40.3527 |
DE | AZTLI-NN | 3.45 | 0.59 | 0.0106 | 42.7451 |
L-SHADE | OpenFOAM | 3.76 | 0.5778 | 0.0106 | 41.4343 |
L-SHADE | AZTLI-NN | 3.76 | 0.59 | 0.0106 | 42.7451 |
CAPR-SHADE | OpenFOAM | 3.45 | 0.5656 | 0.0103 | 41.2978 |
CAPR-SHADE | AZTLI-NN | 3.45 | 0.59 | 0.0106 | 42.7451 |