Integrating Commercial-Off-The-Shelf Components into Radiation-Hardened Drone Designs for Nuclear-Contaminated Search and Rescue Missions
Abstract
:1. Introduction
Literature Review
2. Methodology
3. Demonstration Case
3.1. Scenario Description
3.2. Assumptions and Simplifications
3.3. Navigation System Fault Tree
3.4. Modeling Kalman Filter Software Failures Using Dual-Graph Error Propagation Method (DEPM)
3.5. Modeling Total Ionizing Dose Limits for Electronic Hardware
4. Results and Discussion
4.1. Probability of Loss of Mission (LOM) Using Commercial Off-The-Shelf (COTS) Components
4.2. Selective Radiation-Hardening Using Mission Success Criteria
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.I.; Rahim, M.H.A.; Nordin, R.; Mohamed, F.; Abu-Samah, A.; Abdullah, N.F. Ionizing Radiation Monitoring Technology at the Verge of Internet of Things. Sensors 2021, 21, 7629. [Google Scholar] [CrossRef]
- Pinto, L.R.; Vale, A.; Brouwer, Y.; Borbinha, J.; Corisco, J.; Ventura, R.; Silva, A.M.; Mourato, A.; Marques, G.; Romanets, Y. Radiological Scouting, Monitoring and Inspection Using Drones. Sensors 2021, 21, 3143. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.R.; Tadokoro, S.; Kleiner, A. Disaster Robotics. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2016; pp. 1577–1604. [Google Scholar] [CrossRef]
- Fleetwood, D.M.; Winokur, P.S.; Dodd, P.E. An overview of radiation effects on electronics in the space telecommunications environment. Microelectron. Reliab. 2000, 40, 17–26. [Google Scholar] [CrossRef]
- Normand, E. Single event upset at ground level. IEEE Trans. Nucl. Sci. 1996, 43, 2742–2750. [Google Scholar] [CrossRef] [Green Version]
- Dodd, P.E.; Shaneyfelt, M.R.; Schwank, J.R.; Felix, J.A. Current and Future Challenges in Radiation Effects on CMOS Electronics. IEEE Trans. Nucl. Sci. 2020, 57, 1747–1763. [Google Scholar] [CrossRef]
- Winokur, P.S.; Lum, G.K.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L.; Scott, L. Use of COTS microelectronics in radiation environments. IEEE Trans. Nucl. Sci. 1999, 46, 1494–1503. [Google Scholar] [CrossRef]
- Privat, A.; Barnaby, H.J.; Adell, P.C.; Tolleson, B.S.; Wang, Y.; Han, X.; Davis, P.; Rax, B.R.; Buchheit, T.E. Multiscale Modeling of Total Ionizing Dose Effects in Commercial-off-the-Shelf Parts in Bipolar Technologies. IEEE Trans. Nucl. Sci. 2019, 66, 190–198. [Google Scholar] [CrossRef]
- Ladbury, R.; Bay, M.; Zinchuk, J. Threats to Resiliency of Redundant Systems Due to Destructive SEEs. IEEE Trans. Nucl. Sci. 2021, 68, 970–979. [Google Scholar] [CrossRef]
- Apostolakis, G. The Concept of Probability in Safety Assessments of Technological Systems. Science 1990, 250, 1359–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modarres, M.; Kaminskiy, M.; Krivtsov, V. Reliability Engineering and Risk Analysis: A Practical Guide, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Kripke, S.A. Semantical Considerations on Modal Logic. Acta Philos. Fenn. 1963, 16, 83–94. Available online: http://saulkripkecenter.org/wp-content/uploads/2019/03/Semantical-Considerations-on-Modal-Logic-PUBLIC.pdf (accessed on 1 June 2023).
- Kwiatkowska, M.; Norman, G.; Parker, D. Stochastic Model Checking. In Formal Methods for Performance Evaluation; Bernardo, M., Hillston, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4486, pp. 220–270. [Google Scholar] [CrossRef] [Green Version]
- Baier, C.; Katoen, J.-P. Principles of Model Checking; The MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Schneider, K. Verification of Reactive Systems: Formal Methods and Algorithms; Texts in theoretical computer science; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Rabin, M.O.; Scott, D. Finite Automata and Their Decision Problems. IBM J. Res. Dev. 1959, 3, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Garrick, B.J. Quantifying and Controlling Catastrophic Risks; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Vesely, W.E.; Goldberg, F.F.; Roberts, N.H.; Haasl, D.F. NUREG-0492, ‘Fault Tree Handbook’. 1981. Available online: https://www.nrc.gov/docs/ML1007/ML100780465.pdf (accessed on 1 June 2023).
- Diaconeasa, M.A.; Mosleh, A. The ADS-IDAC Dynamic Platform with Dynamically Linked System Fault Trees. In Proceedings of the International Topical Meeting on Probabilistic Safety, Pittsburgh, PA, USA, 24–28 September 2017. [Google Scholar]
- Morozov, A.; Janschek, K. Dual Graph Error Propagation Model for Mechatronic System Analysis. IFAC Proc. Vol. 2011, 44, 9893–9898. [Google Scholar] [CrossRef]
- Vidineev, V.; Yusupova, N.; Ding, K.; Morozov, A.; Janschek, K. Improved Stochastic Control Flow Model for LLVM-Based Software Reliability Analysis. Industry 4.0 2018, Volume 3. pp. 172–174. Available online: https://stumejournals.com/journals/i4/2018/4/172 (accessed on 2 August 2022).
- Ding, K.; Ding, S.; Morozov, A.; Fabarisov, T.; Janschek, K. On-Line Error Detection and Mitigation for Time-Series Data of Cyber-Physical Systems using Deep Learning Based Methods. In Proceedings of the 2019 15th European Dependable Computing Conference (EDCC), Naples, Italy, 17–20 September 2019; IEEE: New York, NY, USA, 2019; pp. 7–14. [Google Scholar] [CrossRef]
- Marques-silva, J. Practical applications of boolean satisfiability. In Workshop on Discrete Event Systems (WODES); IEEE Press: New York, NY, USA, 2008. [Google Scholar]
- Bryant, R.E.; Heule, M.J. Generating extended resolution proofs with a BDD-based SAT solver. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 76–93. [Google Scholar]
- Vetter, K. The Institute of Resilient Communities. In Resilience: A New Paradigm of Nuclear Safety; Ahn, J., Guarnieri, F., Furuta, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 207–218. [Google Scholar] [CrossRef] [Green Version]
- Vetter, K. Multi-sensor radiation detection, imaging, and fusion. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2016, 805, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Medvedevs, G.U. JPRS Report, Soviet Union: Economic Affairs (‘Chernobyl Notebook’), Soviet Union: Economic Affairs, JPRS-UEA-89-034. 1989. Available online: https://apps.dtic.mil/sti/pdfs/ADA335076.pdf (accessed on 19 June 2023).
- OpenPRA Community, OpenPRA Initiative. 2019. Available online: https://openpra.org/ (accessed on 17 January 2022).
- Earthperson, A.; Otani, C.M.; Nevius, D.; Prescott, S.R.; Diaconeasa, M.A. A combined strategy for dynamic probabilistic risk assessment of fission battery designs using EMRALD and DEPM. Prog. Nucl. Energy 2023, 160, 104673. [Google Scholar] [CrossRef]
- Texas Instruments—Reliability Testing, Texas Instruments Quality & Reliability. Available online: https://www.ti.com/support-quality/reliability/reliability-testing.html (accessed on 10 January 2022).
- mbsa-tud, mbsa-tud/LLVMPars. 2021. Available online: https://github.com/mbsa-tud/LLVMPars (accessed on 25 July 2023).
- GSFC Radiation Data Base. Available online: https://radhome.gsfc.nasa.gov/radhome/RadDataBase/RadDataBase.html (accessed on 16 June 2023).
- Bazzano, G.; Ampollini, A.; Cardelli, F.; Fortini, F.; Nenzi, P.; Palmerini, G.; Picardi, L.; Piersanti, L.; Ronsivalle, C.; Surrenti, V.; et al. Radiation testing of a commercial 6-axis MEMS inertial navigation unit at ENEA Frascati proton linear accelerator. Adv. Space Res. 2021, 67, 1379–1391. [Google Scholar] [CrossRef]
- Qiu, J.; He, D.; Sun, M.; Li, S.; Wen, C.; Hattrick-Simpers, J.; Zheng, Y.F.; Cao, L. Effects of neutron and gamma radiation on lithium-ion batteries. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 345, 27–32. [Google Scholar] [CrossRef]
- Markgraf, M.; Montenbruck, O. Total Ionizing Dose Testing of the Orion and Phoenix GPS Receivers, German Space Operations Center (GSOC), TN. 2004. Available online: https://www.dlr.de/rb/Portaldata/38/Resources/dokumente/GSOC_dokumente/RB-RFT/TN_0401.pdf (accessed on 1 June 2023).
- Rezzak, N.; Wang, J.-J.; Huang, C.-K.; Nguyen, V.; Bakker, G. Total Ionizing Dose Characterization of 65 nm Flash-Based FPGA. In Proceedings of the 2014 IEEE Radiation Effects Data Workshop (REDW), Paris, France, 13–17 July 2014; IEEE: New York, NY, USA, 2014; pp. 1–5. [Google Scholar] [CrossRef]
Term | Definition | Description |
---|---|---|
A set of possible states. | ||
The initial state, which is nominal. | ||
A mapping or transition relation, where is left-total (if the source set equals the domain, is left-total), and is fully connected. |
Regular Expression | Term | Description |
---|---|---|
A+ | Ideal/Perfect System | No errors, faults, or failures occur. |
B | Fault | A fault is a weakness that can potentially lead to errors. |
E+|C+ | Error Propagation | A move from an initial error state leads to a subsequent one. |
D|H | Failure | System fails from either a degraded or a nominal state. |
I|G|F | Recoverable System | Move from higher to lower degradation. |
B(C*|I) | Fault-Tolerant | Avoid transition to failure, given a fault. |
A+|(B(C*|I)) | Failure-Avoidant | No failures occur. |
G|F | Resilient System | Recover from a failure, either fully or partially. |
B(C*|D(E*|G))|(H(E*|G)) | Irrecoverable System | Neither completely fails, nor returns to nominal. |
BC*(ϵ|DE*) | Permanently Failed | System remains irrecoverable forever. |
Term | Definition |
---|---|
A set of elements, always non-empty. | |
A set of optional data terms. | |
An edge-list representing control flows. | |
An edge-list representing data flows. | |
A list of conditional expressions, which apply to the element set . |
Element | Conditional Expressions |
---|---|
A | always: with P(0.8): DATA VARIABLE 1, DATA VARIABLE 2 = error with P(0.2): DATA VARIABLE 1, DATA VARIABLE 2 = ok |
B | if DATA VARIABLE 1 = error, then: with P(0.9): DATA VARIABLE 2 = ok with P(0.1): DATA VARIABLE 2 = error else: with P(1.0): DATA VARIABLE 2 = ok |
C | if DATA VARIABLE 2 & DATA VARIABLE 3 = ok, then: with P(1.0): DATA VARIABLE 4 = ok else: with P(0.2): DATA VARIABLE 4 = ok with P(0.8): DATA VARIABLE 4 = error |
Zone | Dose Rate [rad/hour] | Elapsed Time [minute] | Total Received Dose [rad] |
---|---|---|---|
A | |||
B | |||
C |
Basic Event | Part Number | Component Type | Derated Failure Rate |
---|---|---|---|
SENSOR_IMU | TI-MSP430 Series | MEMS IMU | |
CAM_HW | TI-TDA4AL-Q1 | Vision SoC + DSP | |
RAD_HW | TI-IWR1642AQAGABL | mmWave Radar + DSP | |
DSP_KAL | TI-TMS320C6678 | Kalman Filter DSP |
Basic Event | Basic Event Description | Failure Rate |
---|---|---|
SENSOR_IMU | Inertial Measurement Unit Failure | |
CAM_HW | Vision System-on-Chip Module Failure | |
RAD_HW | mmWave Radar Module Failure | |
DSP_KAL | Filter DSP Hardware Failure | |
CODE_KAL | Kalman Filter Software Failure | DEPM, see section on Page 11 |
GPS_HW | GPS Sensor Module Failure | |
GPS_LOSSY | Lossy GPS Signal | |
SUPPLY_POW | Switching Power Supply Circuit Failure | |
BATT_LOW | Battery Low | Time-dependent; see Figure 6 |
BATT_LOSS | Post-Irradiation Battery Capacity Loss | P = 1 as TID approaches TID limit |
/** * Kalman Filter (single variable) * Assume the input is in register R0 * Assume the initial state estimate is in register R1 * Assume the initial error covariance is in register R2 * Assume the process noise variance is in register R3 * Assume the measurement noise variance is in register R4 **/ Initialization
|
Component | Commercial Off-The-Shelf (COTS) |
---|---|
Inertial Measurement Unit | |
Power Switching Circuit | |
Lithium Ion Battery | |
GPS Sensor Module | |
Vision SoC Module | |
mmWave Radar Module | |
Filter DSP Hardware |
End State | End State Description | P (End State) |
---|---|---|
LOM_A | Loss of Mission in Zone A | |
LOM_B | Loss of Mission in Zone B | |
LOM_C | Loss of Mission in Zone C | |
SUCCESS | Mission Success |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Earthperson, A.; Diaconeasa, M.A. Integrating Commercial-Off-The-Shelf Components into Radiation-Hardened Drone Designs for Nuclear-Contaminated Search and Rescue Missions. Drones 2023, 7, 528. https://doi.org/10.3390/drones7080528
Earthperson A, Diaconeasa MA. Integrating Commercial-Off-The-Shelf Components into Radiation-Hardened Drone Designs for Nuclear-Contaminated Search and Rescue Missions. Drones. 2023; 7(8):528. https://doi.org/10.3390/drones7080528
Chicago/Turabian StyleEarthperson, Arjun, and Mihai A. Diaconeasa. 2023. "Integrating Commercial-Off-The-Shelf Components into Radiation-Hardened Drone Designs for Nuclear-Contaminated Search and Rescue Missions" Drones 7, no. 8: 528. https://doi.org/10.3390/drones7080528
APA StyleEarthperson, A., & Diaconeasa, M. A. (2023). Integrating Commercial-Off-The-Shelf Components into Radiation-Hardened Drone Designs for Nuclear-Contaminated Search and Rescue Missions. Drones, 7(8), 528. https://doi.org/10.3390/drones7080528