Wheat Lodging Segmentation Based on Lstm_PSPNet Deep Learning Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. Data Collection and Preprocessing
2.3. Data Augmentation
2.4. Construction of a Novel Extraction Method for Wheat Lodging Information
2.5. Model Training
2.6. Accuracy Evaluation
3. Results
3.1. Field Lodging Scenario
3.2. Comparison of PSPNet Network Segmentation Accuracy before and after Improvement
3.3. Effect of Image Size on Lodging Monitoring
3.4. Comparison of Monitoring Effects in Different Growth Periods
4. Discussion
4.1. Comparative Analysis between the Method Proposed in This Paper and Previous Studies
4.2. Analysis of Wheat Lodging Monitoring Effect under Different Size Images
4.3. Analysis of Wheat Lodging Monitoring Coupled with Images of Multiple Growth Stages
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonjean, A.P.; Angus, W.J.; van Ginkel, M.; Pagesse, P.; Moore, R.F. The World Wheat Book: A History of Wheat Breeding. Cereal Res. Commun. 2001, 29, 459. Available online: https://link.springer.com/article/10.1007/BF03543695 (accessed on 15 July 2022). [CrossRef] [Green Version]
- Quang Duy, P.; Hirano, M.; Sagawa, S.; Kuroda, E. Analysis of the dry matter production process related to yield and yield components of rice plants grown under the practice of nitrogen-free basal dressing accompanied with sparse planting density. Plant Prod. Sci. 2015, 7, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–330. [Google Scholar] [CrossRef] [Green Version]
- Vargas, J.Q.; Khot, L.R.; Peters, R.T.; Chandel, A.K.; Molaei, B. Low orbiting satellite and small UAS-based high-resolution imagery data to quantify crop lodging: A case study in irrigated spearmint. IEEE Geosci. Remote Sens. Lett. 2019, 17, 755–759. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Nelson, A. Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data. ISPRS J. Photogramm. Remote Sens. 2020, 164, 138–151. [Google Scholar] [CrossRef]
- Guan, H.; Huang, J.; Li, X.; Zeng, Y.; Su, W.; Ma, Y.; Dong, J.; Niu, Q.; Wang, W. An improved approach to estimating crop lodging percentage with Sentinel-2 imagery using machine learning. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102992. [Google Scholar] [CrossRef]
- Sukawattanavijit, C.; Chen, J.; Zhang, H. GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 284–288. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Lu, Y.; Boschetti, M.; Nelson, A. Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2020, 243, 111804. [Google Scholar] [CrossRef]
- Shu, M.; Zhou, L.; Gu, X.; Ma, Y.; Sun, Q.; Yang, G.; Zhou, C. Monitoring of maize lodging using multi-temporal Sentinel-1 SAR data. Adv. Space Res. 2020, 65, 470–480. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Han, Y. Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics). In Potential ofRadarsat-2 Data on Identifying Sugarcane Lodging Caused by Typhoon; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Yang, H.; Chen, E.; Li, Z.; Zhao, C.; Yang, G.; Pignatti, S.; Casa, R.; Zhao, L. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 157–166. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, C.; Wang, H.; Ao, Y.; Jin, X.; Yu, X.; Bai, Y.; Liu, Y.; Shao, M.; Cheng, M.; et al. Detection and analysis of degree of maize lodging using UAV-RGB image multi-feature factors and various classification methods. ISPRS Int. J. Geo-Inf. 2021, 10, 309. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Pan, F.; Lan, Y.; Lu, L.; Cao, D.; Yang, D.; Wen, Y. Wheat lodging area extraction using UAV visible light remote sensing and feature fusion. Trans. Chin. Soc. Agric. Eng. 2021, 37, 73–80. [Google Scholar]
- Li, G.; Zhang, L.; Song, C.; Peng, M.; Zhang, Y.; Han, W. Extraction Method of Wheat Lodging Information Based on Multi-temporal UAV Remote Sensing Data. Trans. Chin. Soc. Agric. Mach. 2019, 50, 211–220. [Google Scholar]
- Chauhan, S.; Darvishzadeh, R.; Lu, Y.; Stroppiana, D.; Boschetti, M.; Pepe, M.; Nelson, A. Wheat lodging assessment using multispectral UAV data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.X.; Qiao, Z.Y.; Gao, Z.Y.; Lu, S.H.; Tian, F. Use of unmanned aerial vehicle imagery and a hybrid algorithm combining a watershed algorithm and adaptive threshold segmentation to extract wheat lodging. Phys. Chem. Earth 2021, 123, 103016. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Y.T.; Song, M.D.; Ding, Y.; Lin, F.F.; Liang, D.; Zhang, D.Y. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.D.; Tseng, H.H.; Hsu, Y.C.; Tsai, H.P. Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice Lodging Identification in Multi-date UAV Visible Images. Remote Sens. 2020, 12, 633–654. [Google Scholar] [CrossRef] [Green Version]
- Zheng, E.G.; Tian, Y.F.; Chen, T. Region Extraction of Corn Lodging in UAV Images Based on Deep Learning. J. Henan Agric. Sci. 2018, 47, 155–160. [Google Scholar] [CrossRef]
- Song, Z.H.; Zhang, Z.T.; Yang, S.Q.; Ding, D.Y.; Ning, J.F. Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging. Comput. Electron. Agric. 2020, 179, 105812. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Li, J.T.; Baenziger, P.S.; Belamkar, V.; Ge, Y.; Zhang, J.; Shi, Y. Automatic Wheat Lodging Detection and Mapping in Aerial Imagery to Support High-Throughput Phenotyping and In-Season Crop Management. Agronomy 2020, 10, 1762–1776. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Ding, Y.; Chen, P.F.; Zhang, X.Q.; Pan, Z.G.; Liang, D. Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network. Comput. Electron. Agric. 2020, 179, 105845–105858. [Google Scholar] [CrossRef]
- Chen L C, Zhu Y, Papandreou, G. ; Zhang, X.Q.; Pan, Z.G.; Liang, D. Encoder-decoder with atrous separable convolution for semantic image segmentation//Proceedings of the European conference on computer vision (ECCV). 2018, 179, 801–818. [CrossRef] [Green Version]
- Pan, Y.; Zhang, G.; Zhang, L. A spatial-channel hierarchical deep learning network for pixel-level automated crack detection. Autom. Constr. 2020, 119, 103357. [Google Scholar] [CrossRef]
- Huyan, J.; Ma, T.; Li, W.; Yang, H.; Xu, Z. Pixelwise asphalt concrete pavement crack detection via deep learning-based semantic segmentation method. Struct. Control. Health Monit. 2022, 29, e2974. [Google Scholar] [CrossRef]
- Cao, J.; Tian, X.; Chen, Z.; Rajamanickam, L.; Jia, Y. Ancient mural segmentation based on a deep separable convolution network. Herit. Sci. 2022, 10, 11. [Google Scholar] [CrossRef]
- Wang, N.; Wang, W.; Hu, W.; Fenster, A.; Li, S. Thanka mural inpainting based on multi-Scale adaptive partial convolution and stroke-like mask. IEEE Trans. Image Process. 2021, 30, 3720–3733. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, Z.; Chen, N.; Gong, J. Land cover classification based on the PSPNet and superpixel segmentation methods with high spatial resolution multispectral remote sensing imagery. J. Appl. Remote Sens. 2021, 15, 034511. [Google Scholar] [CrossRef]
- Xiang, S.; Xie, Q.; Wang, M. Semantic segmentation for remote sensing images based on adaptive feature selection network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8006705. [Google Scholar] [CrossRef]
- Li, J.; Xiu, J.; Yang, Z.; Liu, C. Dual path attention net for remote sensing semantic image segmentation. ISPRS Int. J. Geo-Inf. 2020, 9, 571. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, Y.Y.; Cai, T.B.; Tang, X.F.; Wang, C.G. An Improved PSPnet Model for Semantic Segmentation of UAV Farmland Images. J. Irrig. Drain. 2022, 41, 101–108. [Google Scholar]
- Wang, X.; Guo, Y.; Wang, S.; Cheng, G.; Wang, X.; He, L. Rapid detection of incomplete coal and gangue based on improved PSPNet. Measurement 2022, 201, 111646. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, J.; Xu, W. Shift Pooling PSPNet: Rethinking PSPNet for Building Extraction in Remote Sensing Images from Entire Local Feature Pooling. Remote Sens. 2022, 14, 4889. [Google Scholar] [CrossRef]
- Hu, W.S.; Li, H.C.; Pan, L.; Li, W.; Tao, R.; Du, Q. Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4237–4250. [Google Scholar] [CrossRef]
- Liu, T.; Li, R.; Zhong, X.; Jiang, M.; Jin, X.; Zhou, P.; Liu, S.; Sun, C.; Guo, W. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agric. For. Meteorol 2018, 252, 144–154. [Google Scholar] [CrossRef]
- Zhang, Z.; Igathinathane, C.; Flores, P.; Mathew, J.; Ransom, J.; Ampatzidis, Y.; Das, A.K. UAV mission height effects on wheat lodging ratio detection. Unmanned Aerial Systems in Precision Agriculture; Springer: Singapore, 2022; pp. 73–85. [Google Scholar] [CrossRef]
- Marsland, S. Machine Learning: An Algorithmic Perspective; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Flores, P.; Igathinathane, C.; Naik, D.L.; Kiran, R.; Ransom, J.K. Wheat lodging detection from UAS imagery using machine learning algorithms. Remote Sens. 2020, 12, 1838. [Google Scholar] [CrossRef]
- HamidiSepehr, A.; Mirnezami, S.V.; Ward, J.K. Comparison of object detection methods for corn damage assessment using deep learning. Trans. ASABE 2020, 63, 1969–1980. [Google Scholar] [CrossRef]
- Yang, B.H.; Zhu, Y.; Zhou, S.J. Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model. Sensors 2021, 21, 6826. [Google Scholar] [CrossRef]
Model | Precision | Recall | F1-Score |
---|---|---|---|
PSPNet | 0.901 | 0.874 | 0.887 |
Lstm_PSPNet | 0.952 | 0.940 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Cheng, T.; Cai, N.; Zhou, X.-G.; Diao, Z.; Wang, T.; Du, S.; Liang, D.; Zhang, D. Wheat Lodging Segmentation Based on Lstm_PSPNet Deep Learning Network. Drones 2023, 7, 143. https://doi.org/10.3390/drones7020143
Yu J, Cheng T, Cai N, Zhou X-G, Diao Z, Wang T, Du S, Liang D, Zhang D. Wheat Lodging Segmentation Based on Lstm_PSPNet Deep Learning Network. Drones. 2023; 7(2):143. https://doi.org/10.3390/drones7020143
Chicago/Turabian StyleYu, Jun, Tao Cheng, Ning Cai, Xin-Gen Zhou, Zhihua Diao, Tianyi Wang, Shizhou Du, Dong Liang, and Dongyan Zhang. 2023. "Wheat Lodging Segmentation Based on Lstm_PSPNet Deep Learning Network" Drones 7, no. 2: 143. https://doi.org/10.3390/drones7020143
APA StyleYu, J., Cheng, T., Cai, N., Zhou, X.-G., Diao, Z., Wang, T., Du, S., Liang, D., & Zhang, D. (2023). Wheat Lodging Segmentation Based on Lstm_PSPNet Deep Learning Network. Drones, 7(2), 143. https://doi.org/10.3390/drones7020143