Distributed Antenna in Drone Swarms: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapman, A. It’s okay to call them drones. J. Unmanned Veh. Syst. 2014, 2, iii–v. [Google Scholar] [CrossRef]
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A Review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for Remote Sensing Applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
- Benarbia, T.; Kyamakya, K. A literature review of drone-based package delivery logistics systems and their implementation feasibility. Sustainability 2021, 14, 360. [Google Scholar] [CrossRef]
- Hildmann, H.; Kovacs, E. Review: Using unmanned aerial vehicles (uavs) as mobile sensing platforms (msps) for disaster response, Civil Security and Public Safety. Drones 2019, 3, 59. [Google Scholar] [CrossRef]
- Amponis, G.; Lagkas, T.; Zevgara, M.; Katsikas, G.; Xirofotos, T.; Moscholios, I.; Sarigiannidis, P. Drones in B5G/6G networks as flying base stations. Drones 2022, 6, 39. [Google Scholar] [CrossRef]
- Castrillo, V.U.; Manco, A.; Pascarella, D.; Gigante, G. A review of Counter-UAS Technologies for cooperative defensive teams of drones. Drones 2022, 6, 65. [Google Scholar] [CrossRef]
- Roldán-Gómez, J.J.; González-Gironda, E.; Barrientos, A. A survey on robotic technologies for Forest Firefighting: Applying drone swarms to improve firefighters’ efficiency and safety. Appl. Sci. 2021, 11, 363. [Google Scholar] [CrossRef]
- Asaamoning, G.; Mendes, P.; Rosário, D.; Cerqueira, E. Drone swarms as networked control systems by integration of networking and computing. Sensors 2021, 21, 2642. [Google Scholar] [CrossRef]
- Hildmann, H.; Kovacs, E.; Saffre, F.; Isakovic, A.F. Nature-inspired drone swarming for real-time aerial data-collection under dynamic operational constraints. Drones 2019, 3, 71. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tian, G.; Zhang, J.; Chen, Y. On unmanned aerial vehicles light show systems: Algorithms, software and hardware. Appl. Sci. 2021, 11, 7687. [Google Scholar] [CrossRef]
- Parker, D.; Zimmermann, D.C. Phased arrays—Part 1: Theory and architectures. IEEE Trans. Microw. Theory Tech. 2002, 50, 678–687. [Google Scholar] [CrossRef]
- Mayo, R.; Harmer, S. A cost-effective modular phased array. In Proceedings of the 2013 IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, USA, 15–18 October 2013. [Google Scholar]
- Weedon, W.H. Phased array digital beamforming hardware development at Applied Radar. In Proceedings of the 2010 IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, USA, 12–15 October 2010. [Google Scholar]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting ris-aided hybrid satellite-terrestrial relay networks: Joint Beamforming Design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyang, J.; Zhu, W.-P. Secure transmission in Cognitive Satellite Terrestrial Networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- An, K.; Liang, T.; Zheng, G.; Yan, X.; Li, Y.; Chatzinotas, S. Performance limits of cognitive-uplink FSS and terrestrial FS for ka-band. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2604–2611. [Google Scholar] [CrossRef]
- Robinson, L.A.; Weir, W.B.; Young, L. An RF time-domain reflectometer not in Real time (short papers). IEEE Trans. Microw. Theory Tech. 1972, 20, 855–857. [Google Scholar] [CrossRef]
- Brookner, E. Phased-array and radar breakthroughs. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007. [Google Scholar]
- Naqvi, A.; Lim, S. Review of recent phased arrays for millimeter-wave wireless communication. Sensors 2018, 18, 3194. [Google Scholar] [CrossRef]
- Hall, T.; Lie, D.; Nguyen, T.; Mayeda, J.; Lie, P.; Lopez, J.; Banister, R. Non-contact sensor for long-term continuous vital signs monitoring: A review on Intelligent phased-array doppler sensor design. Sensors 2017, 17, 2632. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory Analysis and Design; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Alexeff, I.; Anderson, T.; Farshi, E.; Karnam, N.; Pulasani, N.R. Recent results for plasma antennas. Phys. Plasmas 2008, 15, 057104. [Google Scholar] [CrossRef]
- Chandra, R.S.; Breheny, S.H.; D’Andrea, R. Antenna Array synthesis with clusters of unmanned aerial vehicles. Automatica 2008, 44, 1976–1984. [Google Scholar] [CrossRef]
- Tanmay, R.G. Evaluation of Coordinated Drone Swarm Operation as a Synthetic Aperture Antenna: A Simulation-Based Study. MPhil Thesis, Tampere University, Tampere, Finland, 2019. [Google Scholar]
- Dill, S.; Schreiber, E.; Engel, M.; Heinzel, A.; Peichl, M. A drone carried multichannel Synthetic Aperture Radar for advanced buried object detection. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019. [Google Scholar]
- Ren, H.; Sun, Z.; Yang, J.; Xiao, Y.; An, H.; Li, Z.; Wu, J. Swarm UAV SAR for 3-D Imaging: System Analysis and sensing matrix design. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5238316. [Google Scholar] [CrossRef]
- Beauchamp, R.M.; Arumugam, D.D.; Burgin, M.S.; Bush, J.D.; Khazendar, A.; Gim, Y.; Almorqi, S.; Almalki, M.; Almutairi, Y.A.; Alsama, A.A.; et al. Can airborne ground penetrating radars explore groundwater in hyper-arid regions? IEEE Access 2018, 6, 27736–27759. [Google Scholar] [CrossRef]
- Edemsky, D.; Popov, A.; Prokopovich, I.; Garbatsevich, V. Airborne ground penetrating radar, field test. Remote Sens. 2021, 13, 667. [Google Scholar] [CrossRef]
- Utsi, E.C. Ground Penetrating Radar: Theory and Practice; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Šipoš, D.; Gleich, D. A lightweight and low-power UAV-borne ground penetrating radar design for landmine detection. Sensors 2020, 20, 2234. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fernandez, M.; Lopez, Y.A.; Andres, F.L.-H. Airborne multi-channel ground penetrating radar for improvised explosive devices and landmine detection. IEEE Access 2020, 8, 165927–165943. [Google Scholar] [CrossRef]
- Čeru, T.; Dolenec, M.; Gosar, A. Application of ground penetrating radar supported by mineralogical-geochemical methods for mapping unroofed cave sediments. Remote Sens. 2018, 10, 639. [Google Scholar] [CrossRef]
- Poisel, R. Antenna Systems and Electronic Warfare Applications; Artech House: Boston, MA, USA, 2012. [Google Scholar]
- Guccione, P.; Monti Guarnieri, A.; Rocca, F.; Giudici, D.; Gebert, N. Along-track multistatic synthetic aperture radar formations of Minisatellites. Remote Sens. 2020, 12, 124. [Google Scholar] [CrossRef]
- GPS World. Skytraq Offers Multi-Band GNSS Receiver with 1-cm Position Accuracy. Available online: https://www.gpsworld.com/skytraq-offers-multi-band-gnss-receiver-with-1-cm-position-accuracy/ (accessed on 19 December 2022).
- Campion, M.; Ranganathan, P.; Faruque, S. UAV swarm communication and Control Architectures: A Review. J. Unmanned Veh. Syst. 2019, 7, 93–106. [Google Scholar] [CrossRef]
Symbol | Quantity | Unit | Implemented in Model as |
---|---|---|---|
Position of ith drone | m | Input | |
Vector displacement of steering position from ith drone | m | Calculated | |
Vector displacement of general position from ith drone | m | Calculated | |
Steering position | m | Input | |
General position | m | Input | |
Electric field | Vm−1 | Calculated | |
Speed of light | ms−1 | Input | |
Permeability of free space | Hm−1 | Input | |
Wavenumber of jth frequency step | m−1 | Calculated | |
Power fed into the ith antenna element at the jth wavenumber | W | Calculated | |
Gain of the ith antenna element at the jth wavenumber | - | Calculated | |
Phase shift applied to the ith antenna element at the jth wavenumber. | Radians | Calculated | |
Individual antenna side length | m | Input | |
Angle between ith drone and vertical | Radians | Calculated | |
Intensity ofjth frequency step | Wm−2 | Calculated | |
Frequency of jth frequency step | Hz | Calculated | |
Centre frequency | Hz | Input | |
Bandwidth | Hz | Input | |
Max power per element | W | Input | |
Mean phase of radiation from ith drone at jth frequency step | Radians | Calculated | |
Standard deviation of phase at jth frequency step | Radians | Input | |
Array gain at jth frequency step | - | Calculated | |
Standard deviation in position | m | Input | |
Standard deviation in timing | s | Input |
Number of Drones | Mean Maximum Gain | −3 dB Mean Beam Size at 500 Meters m | Field Region at 500 m | Drone Position Uncertainty m | Distribution |
---|---|---|---|---|---|
24 | 302 | Width 2.34 Length 11.4 | Near | 0 | Cuboid 50 × 5 × 1 m |
24 | 112 | Width 2.60 Length 11.8 | Near | 0.05 | Cuboid 50 × 5 × 1 m |
24 | 302 | Width 4.91 Length 4.98 | Near | 0 | Cuboid 25 × 25 × 1 m |
24 | 109 | Width 4.75 Length 5.06 | Near | 0.05 | Cuboid 25 × 25 × 1 m |
24 | 303 | Width 9.79 Length 9.95 | Far | 0 | Cuboid 10 × 10 × 1 m |
24 | 109 | Width 9.70 Length 9.56 | Far | 0.05 | Cuboid 10 × 10 × 1 m |
24 | 296 | Width 1.23 Length 1.25 | Near | 0 | Cuboid 100 × 100 × 1 m |
24 | 105 | Width 1.26 Length 1.27 | Near | 0.05 | Cuboid 100 × 100 × 1 m |
24 | 109 | Width 5.30 Length 11.32 | Far | 0.05 | The line y = x, distributed between values −10 < x < 10 and −10 < y < 10 m |
24 | 110 | Width 6.42 Length 6.38 | Far | 0.05 | The surface of a spherical cap, with radius of 500 m and with x and y distributed between −10 and 10 m |
Number of Drones | Mean Maximum Gain dB | −3 dB Mean Beam Size at 500 Meters m | Field Region at 500 m | Drone Position Uncertainty m | Distribution |
---|---|---|---|---|---|
5 | 56 | Length 1.67 Width 1.60 | Near | 0.02 | Cuboid 100 × 100 × 1 m |
10 | 105 | Length 1.37 Width 1.42 | Near | 0.02 | Cuboid 100 × 100 × 1 m |
25 | 262 | Width 1.28 Length 1.30 | Near | 0.02 | Cuboid 100 × 100 × 1 m |
50 | 521 | Width 1.29 Length 1.29 | Near | 0.02 | Cuboid 100 × 100 × 1 m |
100 | 1040 | Width 1.29 Length 1.29 | Near | 0.02 | Cuboid 100 × 100 × 1 m |
250 | 2580 | Width 1.28 Length 1.28 | Near | 0.02 | Cuboid 100 × 100 × 1 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmer, S.W.; De Novi, G. Distributed Antenna in Drone Swarms: A Feasibility Study. Drones 2023, 7, 126. https://doi.org/10.3390/drones7020126
Harmer SW, De Novi G. Distributed Antenna in Drone Swarms: A Feasibility Study. Drones. 2023; 7(2):126. https://doi.org/10.3390/drones7020126
Chicago/Turabian StyleHarmer, Stuart William, and Gianluca De Novi. 2023. "Distributed Antenna in Drone Swarms: A Feasibility Study" Drones 7, no. 2: 126. https://doi.org/10.3390/drones7020126
APA StyleHarmer, S. W., & De Novi, G. (2023). Distributed Antenna in Drone Swarms: A Feasibility Study. Drones, 7(2), 126. https://doi.org/10.3390/drones7020126