Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Method
2.3. Machine Learning Procedure
2.4. Background Removal
2.5. Detecting Process
2.6. Performance Assessment
3. Results
3.1. Performance of the Augmentation Phase
3.2. Performance at Designed Sites
3.3. Performance at Testing Site
4. Discussion
4.1. Effects on the Detection Performance
4.2. The Potential Approach and Future Improvements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ocean Conservancy. Tracking Trash 25 Years of Action for the Ocean; Organisation Report. ICC Report; Ocean Conservancy: Washington, DC, USA, 2011. [Google Scholar]
- Wilcox, C.; Mallos, N.J.; Leonard, G.H.; Rodriguez, A.; Hardesty, B.D. Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife. Mar. Policy 2016, 65, 107–114. [Google Scholar] [CrossRef]
- Guart, A.; Wagner, M.; Mezquida, A.; Lacorte, S.; Oehlmann, J.; Borrell, A. Migration of plasticisers from Tritan™ and polycarbonate bottles and toxicological evaluation. Food Chem. 2013, 141, 373–380. [Google Scholar] [CrossRef]
- Wagner, M.; Oehlmann, J. Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environ. Sci. Pollut. Res. 2009, 16, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Oehlmann, J. Endocrine disruptors in bottled mineral water: Estrogenic activity in the E-Screen. J. Steroid Biochem. Mol. Biol. 2011, 127, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, S.; Guo, H.; Lin, H.; Zhang, Y.; Long, Z.; Huang, H. Study of marine debris around a tourist city in East China: Implication for waste management. Sci. Total Environ. 2019, 676, 278–289. [Google Scholar] [CrossRef]
- Pieper, C.; Magalhaes Loureiro, C.; Law, K.L.; Amaral-Zettler, L.A.; Quintino, V.; Rodrigues, A.M.; Ventura, M.A.; Martins, A. Marine litter footprint in the Azores Islands: A climatological perspective. Sci. Total Environ. 2021, 761, 143310. [Google Scholar] [CrossRef]
- Wessel, C.; Swanson, K.; Weatherall, T.; Cebrian, J. Accumulation and distribution of marine debris on barrier islands across the northern Gulf of Mexico. Mar. Pollut. Bull. 2019, 139, 14–22. [Google Scholar] [CrossRef]
- Kataoka, T.; Murray, C.C.; Isobe, A. Quantification of marine macro-debris abundance around Vancouver Island, Canada, based on archived aerial photographs processed by projective transformation. Mar. Pollut. Bull. 2018, 132, 44–51. [Google Scholar] [CrossRef]
- Lavers, J.L.; Oppel, S.; Bond, A.L. Factors influencing the detection of beach plastic debris. Mar. Environ. Res. 2016, 119, 245–251. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef]
- Moy, K.; Neilson, B.; Chung, A.; Meadows, A.; Castrence, M.; Ambagis, S.; Davidson, K. Mapping coastal marine debris using aerial imagery and spatial analysis. Mar. Pollut. Bull. 2018, 132, 52–59. [Google Scholar] [CrossRef]
- Sasaki, K.; Sekine, T.; Burtz, L.-J.; Emery, W.J. Coastal Marine Debris Detection and Density Mapping With Very High Resolution Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6391–6401. [Google Scholar] [CrossRef]
- Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Sci. Total Environ. 2019, 693, 133581. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping marine litter using UAS on a beach-dune system: A multidisciplinary approach. Sci. Total Environ. 2020, 706, 135742. [Google Scholar] [CrossRef]
- Kako, S.I.; Morita, S.; Taneda, T. Estimation of plastic marine debris volumes on beaches using unmanned aerial vehicles and image processing based on deep learning. Mar. Pollut. Bull. 2020, 155, 111127. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Gonçalves, L.; Sobral, P.; Bessa, F. Quantifying marine macro litter abundance on a sandy beach using unmanned aerial systems and object-oriented machine learning methods. Remote Sens. 2020, 12, 2599. [Google Scholar] [CrossRef]
- Martin, C.; Zhang, Q.; Zhai, D.; Zhang, X.; Duarte, C.M. Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning. Environ. Pollut. 2021, 277, 116730. [Google Scholar] [CrossRef]
- Takaya, K.; Shibata, A.; Mizuno, Y.; Ise, T. Unmanned aerial vehicles and deep learning for assessment of anthropogenic marine debris on beaches on an island in a semi-enclosed sea in Japan. Environ. Res. Commun. 2022, 4, 015003. [Google Scholar] [CrossRef]
- Maharjan, N.; Miyazaki, H.; Pati, B.M.; Dailey, M.N.; Shrestha, S.; Nakamura, T. Detection of River Plastic Using UAV Sensor Data and Deep Learning. Remote Sens. 2022, 14, 3049. [Google Scholar] [CrossRef]
- Bosence, D. Coralline algal reef frameworks. J. Geol. Soc. 1983, 140, 365–376. [Google Scholar] [CrossRef]
- Liu, L.-C.; Lin, S.-M.; Caragnano, A.; Payri, C. Species diversity and molecular phylogeny of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from Taoyuan algal reefs in northern Taiwan, including Crustaphytum gen. nov. and three new species. J. Appl. Phycol. 2018, 30, 3455–3469. [Google Scholar] [CrossRef]
- Rosevelt, C.; Los Huertos, M.; Garza, C.; Nevins, H. Marine debris in central California: Quantifying type and abundance of beach litter in Monterey Bay, CA. Mar. Pollut. Bull. 2013, 71, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, X.; Ge, S.S. Research on the Algorithm of Target Location in Aerial Images under a Large Inclination Angle. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 3–5 July 2021; pp. 541–546. [Google Scholar]
- Jiang, S.; Jiang, C.; Jiang, W. Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS J. Photogramm. Remote Sens. 2020, 167, 230–251. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Batsaris, M.; Spondylidis, S.; Topouzelis, K. A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone. Drones 2021, 5, 6. [Google Scholar] [CrossRef]
- Ventura, D.; Bonifazi, A.; Gravina, M.F.; Belluscio, A.; Ardizzone, G. Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA). Remote Sens. 2018, 10, 1331. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Boudjit, K.; Ramzan, N. Human detection based on deep learning YOLO-v2 for real-time UAV applications. J. Exp. Theor. Artif. Intell. 2022, 34, 527–544. [Google Scholar] [CrossRef]
- Han, X.; Chang, J.; Wang, K. Real-time object detection based on YOLO-v2 for tiny vehicle object. Procedia Comput. Sci. 2021, 183, 61–72. [Google Scholar] [CrossRef]
- Raskar, P.S.; Shah, S.K. Real time object-based video forgery detection using YOLO (V2). Forensic Sci. Int. 2021, 327, 110979. [Google Scholar] [CrossRef]
- Sridhar, P.; Jagadeeswari, M.; Sri, S.H.; Akshaya, N.; Haritha, J. Helmet Violation Detection using YOLO v2 Deep Learning Framework. In Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 28–30 April 2022; pp. 1207–1212. [Google Scholar]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection. Sustain. Cities Soc. 2021, 65, 102600. [Google Scholar] [CrossRef]
- Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Background subtraction. In Computer Vision Using Local Binary Patterns; Springer: Berlin/Heidelberg, Germany, 2011; pp. 127–134. [Google Scholar]
- Xue, G.; Song, L.; Sun, J.; Wu, M. Hybrid center-symmetric local pattern for dynamic background subtraction. In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 11–15 July 2011; pp. 1–6. [Google Scholar]
- Hoseinnezhad, R.; Vo, B.-N.; Vu, T.N. Visual tracking of multiple targets by multi-Bernoulli filtering of background subtracted image data. In Proceedings of the International Conference in Swarm Intelligence, Chongqing, China, 12–15 June 2011; pp. 509–518. [Google Scholar]
- Cioppa, A.; Braham, M.; Van Droogenbroeck, M. Asynchronous Semantic Background Subtraction. J. Imaging 2020, 6, 50. [Google Scholar] [CrossRef]
- El Harrouss, O.; Moujahid, D.; Tairi, H. Motion detection based on the combining of the background subtraction and spatial color information. In Proceedings of the 2015 Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 25–26 March 2015; pp. 1–4. [Google Scholar]
- Elhabian, S.Y.; El-Sayed, K.M.; Ahmed, S.H. Moving object detection in spatial domain using background removal techniques-state-of-art. Recent Pat. Comput. Sci. 2008, 1, 32–54. [Google Scholar] [CrossRef]
- Intachak, T.; Kaewapichai, W. Real-time illumination feedback system for adaptive background subtraction working in traffic video monitoring. In Proceedings of the 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), Chiang Mai, Thailand, 7–9 December 2011; pp. 1–5. [Google Scholar]
- Piccardi, M. Background subtraction techniques: A review. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), Melbourne, Australia, 10–13 October 2004; pp. 3099–3104. [Google Scholar]
- Shaikh, S.H.; Saeed, K.; Chaki, N. Moving object detection using background subtraction. In Moving Object Detection Using Background Subtraction; Springer: Berlin/Heidelberg, Germany, 2014; pp. 15–23. [Google Scholar]
- Bouchard, M.; Jousselme, A.-L.; Doré, P.-E. A proof for the positive definiteness of the Jaccard index matrix. Int. J. Approx. Reason. 2013, 54, 615–626. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1483–1498. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-L.; Anagaw, A.; Chang, L.; Wang, Y.C.; Hsiao, C.-Y.; Lee, W.-H. Ship detection based on YOLOv2 for SAR imagery. Remote Sens. 2019, 11, 786. [Google Scholar] [CrossRef] [Green Version]
- Dave, A.; Khurana, T.; Tokmakov, P.; Schmid, C.; Ramanan, D. Tao: A large-scale benchmark for tracking any object. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 436–454. [Google Scholar]
- McKee, D.; Shuai, B.; Berneshawi, A.; Wang, M.; Modolo, D.; Lazebnik, S.; Tighe, J. Multi-Object Tracking with Hallucinated and Unlabeled Videos. arXiv 2021, arXiv:2108.08836. [Google Scholar]
- Song, K.; Jung, J.-Y.; Lee, S.H.; Park, S. A comparative study of deep learning-based network model and conventional method to assess beach debris standing-stock. Mar. Pollut. Bull. 2021, 168, 112466. [Google Scholar] [CrossRef]
- Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
Parameter | Value |
---|---|
Training option | Sdgm (stochastic gradient descent with momentum) |
Mini-batch size | 8, 16 |
Number of epochs | 50, 100, 150, …, 2000 |
Initial learning rate | 10−3, 10−4, 10−5 |
Learning rate drop factor | 0.8 |
Learning rate drop period | 80 |
IoU | Precision | Recall | F1-Score | ||||||
---|---|---|---|---|---|---|---|---|---|
Aug | No Aug | Aug | No Aug | Aug | No Aug | Aug | No Aug | ||
Training data | Background removal image source | 0.81 ± 0.02 | 0.74 ± 0.01 | 0.96 ± 0.03 | 1.00 ± 0.00 | 0.98 ± 0.01 | 0.36 ± 0.02 | 0.97 ± 0.02 | 0.52 ± 0.02 |
Original image source | 0.78 ± 0.01 | 0.66 ± 0.01 | 0.98 ± 0.02 | 1.00 ± 0.00 | 0.97 ± 0.01 | 0.34 ± 0.02 | 0.98 ± 0.01 | 0.51 ± 0.01 | |
Testing data | Background removal image source | 0.70 ± 0.01 | 0.57 ± 0.00 | 0.97 ± 0.04 | 1.00 ± 0.00 | 0.96 ± 0.03 | 0.27 ± 0.01 | 0.96 ± 0.02 | 0.42 ± 0.01 |
Original image source | 0.68 ± 0.00 | 0.50 ± 0.01 | 0.98 ± 0.02 | 1.00 ± 0.00 | 0.99 ± 0.01 | 0.31 ± 0.03 | 0.98 ± 0.01 | 0.47 ± 0.02 |
Reference | Resolution (cm/pixel) | Machine Learning Tool | Training Sample | Precision | Recall | F-Score |
---|---|---|---|---|---|---|
Martin et al. (2018) [11] | 0.5~0.7 | Random forest | 243 images, 2349 samples | 0.08 | 0.44 | 0.13 |
Fallati et al. (2019) [14] | 0.44 | Deep-learning-based software | Thousands of images per class | 0.54 | 0.44 | 0.49 |
Gonçalves et al. (2020) [15] | 0.55 | Random forest | 311 images, 1277 blocks of training data source | 0.73 | 0.74 | 0.75 |
Gonçalves et al. (2020) [17] | 0.55 | Random forest | 394 samples | 0.75 | 0.70 | 0.73 |
SVM | 0.78 | 0.63 | 0.69 | |||
KNN | 0.67 | 0.63 | 0.65 | |||
Papakonstantinou et al. (2021) [26] | 0.49 | VGG19 | 15,340 images | 0.84 | 0.72 | 0.77 |
Martin et al. (2021) [18] | 0.27 | Faster R-CNN | 440 images | 0.47 | 0.64 | 0.44 |
Takaya et al. (2022) [19] | 0.11 | RetinaNet | 2970 images | 0.59 | 0.90 | 0.71 |
Maharjan et al. (2022) [20] | 0.82 | YOLO v2 | 500 samples each river | - | - | 0.66 |
YOLO v3 | - | - | 0.75 | |||
YOLO v4 | - | - | 0.78 | |||
YOLO v5 | - | - | 0.78 | |||
This work: | 0.54 | YOLO v2 | 20 images, 624 segments, 81 BMD samples | |||
●designed sites | 0.94 | 0.97 | 0.95 | |||
●testing site | 0.61 | 0.86 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.L.C.; Huang, Z.-C.; Tseng, K.-H.; Chou, P.-H. Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques. Drones 2022, 6, 401. https://doi.org/10.3390/drones6120401
Tran TLC, Huang Z-C, Tseng K-H, Chou P-H. Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques. Drones. 2022; 6(12):401. https://doi.org/10.3390/drones6120401
Chicago/Turabian StyleTran, Thi Linh Chi, Zhi-Cheng Huang, Kuo-Hsin Tseng, and Ping-Hsien Chou. 2022. "Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques" Drones 6, no. 12: 401. https://doi.org/10.3390/drones6120401
APA StyleTran, T. L. C., Huang, Z. -C., Tseng, K. -H., & Chou, P. -H. (2022). Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques. Drones, 6(12), 401. https://doi.org/10.3390/drones6120401