Estimation of Winter Wheat Yield from UAV-Based Multi-Temporal Imagery Using Crop Allometric Relationship and SAFY Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Data Collection
2.3. Combine Harvester Yield Data Collection
2.4. UAV-Based Image Collection
2.5. UAV-Based Plant Height and LAIe Maps
2.6. Weather Data
2.7. Allometric Relationship Establishment
2.8. SAFY Model
2.9. Modified SAFY-Height Model
3. Results
3.1. Allometric Relationship between Plant Height and DAM
3.2. Estimated Plant DAM Using SAFY Model in S2
4. Discussion
4.1. The Allometric Relationship between Winter Wheat Plant Height and DAM
4.2. Uncertainty of Final Yield Estimation Using the Modified SAFY-Height Model
4.3. Future Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad, S.; Bajwa, A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Stafford, J.; Solutions, S. Precision Agriculture for Sustainability, 1st ed.; Stafford, J., Solutions, S., Eds.; Burleigh Dodds Science Publishing: London, UK, 2018; ISBN 9781786761880. [Google Scholar]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Miller, J.R.; Pattey, E.; Haboudane, D.; Strachan, I.B.; Hinther, M. Monitoring crop biomass accumulation using multi-temporal hyperspectral remote sensing data. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 1637–1640. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; Mccarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-Green-Blue High-Resolution Digital Images for Assessment of Winter Cover Crop Biomass. GIScience Remote. Sens. 2011, 48, 86–98. [Google Scholar] [CrossRef]
- Kouadio, L.; Newlands, N.K.; Davidson, A.; Zhang, Y.; Chipanshi, A. Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale. Remote. Sens. 2014, 6, 10193–10214. [Google Scholar] [CrossRef] [Green Version]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Hodges, T.; Botner, D.; Sakamoto, C.; Hayshaug, J. Using the CERES-Maize model to estimate production for the U.S. Cornbelt. Agric. For. Meteorol. 1987, 40, 293–303. [Google Scholar] [CrossRef]
- Masereel, B. An overview of inhibitors of Na+/H+ exchanger. Eur. J. Med. Chem. 2003, 38, 547–554. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- van Diepen, C.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Qin, X.-L.; Weiner, J.; Qi, L.; Xiong, Y.-C.; Li, F.-M. Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum). Field Crop. Res. 2013, 144, 162–166. [Google Scholar] [CrossRef]
- Gardner, F.P.; Pearce, R.B.; Mitchell, R.L.; Pierce, F.P.F.; Brent, R.B.R.; Gardner, F.P.; Pearce, R.B.; Mitchell, L.; Franklin, F.P.; Brent, R.B.R. Physiology of Crop Plants. Ames: Lowa State University Press: Iowa City, IA, USA, 1985; ISBN 081381376X. [Google Scholar]
- Bakhshandeh, E.; Soltani, A.; Zeinali, E.; Kallate-Arabi, M. Prediction of plant height by allometric relationships in field-grown wheat. Cereal Res. Commun. 2012, 40, 413–422. [Google Scholar] [CrossRef]
- Song, Y.; Birch, C.; Rui, Y.; Hanan, J. Allometric Relationships of Maize Organ Development under Different Water Regimes and Plant Densities. Plant Prod. Sci. 2015, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Colaizzi, P.D.; Evett, S.R.; Brauer, D.K.; Howell, T.A.; Tolk, J.A.; Copeland, K.S. Allometric Method to Estimate Leaf Area Index for Row Crops. Agron. J. 2017, 109, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Reddy, V.R.; Pachepsky, Y.A.; Whisler, F.D. Allometric Relationships in Field-grown Soybean. Ann. Bot. 1998, 82, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 2008, 23, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, J.; Shan, B. An Effective Leaf Area Index Estimation Method for Wheat from UAV-Based Point Cloud Data. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1801–1804. [Google Scholar] [CrossRef]
- Ni, Z.; Burks, T.F.; Lee, W.S. 3D Reconstruction of Plant/Tree Canopy Using Monocular and Binocular Vision. J. Imaging 2016, 2, 28. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote. Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Teng, P.; Shimizu, Y.; Hosoi, F.; Omasa, K. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System. Sensors 2016, 16, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Qian, B.; Jing, Q.; Croft, H.; Chen, J.; Wang, J.; Huffman, T.; Shang, J.; Chen, P. Deriving Maximum Light Use Efficiency From Crop Growth Model and Satellite Data to Improve Crop Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 104–117. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Dong, T.; Shang, J.; Liu, J.; Song, Y. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Sci. Total. Environ. 2019, 650, 1707–1721. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Shang, J.; Liao, C. Using UAV-Based SOPC Derived LAI and SAFY Model for Biomass and Yield Estimation of Winter Wheat. Remote Sens. 2020, 12, 2378. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Shang, J. Estimating Effective Leaf Area Index of Winter Wheat Using Simulated Observation on Unmanned Aerial Vehicle-Based Point Cloud Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 2874–2887. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J. Winter Wheat Canopy Height Extraction from UAV-Based Point Cloud Data with a Moving Cuboid Filter. Remote. Sens. 2019, 11, 1239. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Liu, J.; Huffman, T.; Qian, B.; Pattey, E.; Wang, J.; Zhao, T.; Geng, X.; Kroetsch, D.; Dong, T.; et al. Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images. J. Appl. Remote. Sens. 2014, 8, 85196. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Maas, S.J. Parameterized Model of Gramineous Crop Growth: I. Leaf Area and Dry Mass Simulation. Agron. J. 1993, 85, 348–353. [Google Scholar] [CrossRef]
- Battude, M.; Bitar, A.A.; Brut, A.; Cros, J.; Dejoux, J.; Huc, M.; Sicre, C.M.; Tallec, T.; Demarez, V. Estimation of Yield and Water Needs of Maize Crops Combining HSTR Images with a Simple Crop Model, in the Perspective of Sentinel-2 Mission. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.-F.; Huc, M.; Keravec, P.; Béziat, P.; et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote. Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef]
- Betbeder, J.; Fieuzal, R.; Baup, F. Assimilation of LAI and Dry Biomass Data From Optical and SAR Images Into an Agro-Meteorological Model to Estimate Soybean Yield. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 2540–2553. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric. For. Meteorol. 2010, 150, 1485–1490. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
DAM (S1) | DAM (S2) | Canopy Height & LAIe (S1) | Canopy Height & LAIe (S2) | UAV Imagery (S2) | BBCH | |
---|---|---|---|---|---|---|
8-May | 12 samples | 12 samples | 20 | |||
11-May | 32 samples | 1257 images | 21 | |||
17-May | 12 samples | 12 samples | 32 samples | 25 | ||
21-May | 12 samples | 12 samples | 32 samples | 1157 images | 31 | |
27-May | 12 samples | 12 samples | 32 samples | 1157 images | 39 | |
3-Jun | 12 samples | 12 samples | 32 samples | 49 | ||
11-Jun | 12 samples | 12 samples | 32 samples | 65 | ||
16-Jun | 69 | |||||
20-Jul | 12 samples | 32 samples | 12 samples | 85 |
Parameter Name | Notation | Unit | Range | Value | Source |
---|---|---|---|---|---|
Climatic efficiency | - | 0.48 | [30,31,32] | ||
Temperature range for winter wheat growth | , , | °C | [0,25,30] | [23,32] | |
Specific leaf area | m2/g | 0.022 | [23] | ||
Initial dry aboveground biomass | g/m2 | 4.2 | [18,23] | ||
Light-extinction coefficient | - | 0.5 | [18,23] | ||
Day of plant emergence | day | 64 | In-situ measurement | ||
Day of senescence | day | 284 | In-situ measurement | ||
Daily shortwave solar radiation | MJ/m2/d | In-situ measurement | |||
Daily mean temperature | °C | In-situ measurement | |||
Partition to leaf function parameter a | - | 0.2608 | [26] | ||
Partition to leaf function: parameter b | - | 0.0015 | [26] | ||
Sum of temperature for senescence | °C | 1080.96 | [26] | ||
Rate of senescence | °C day | 2475.48 | [26] | ||
Effective light-use efficiency | g/MJ | 1.5–3.5 | Variable in this study Range [18,23] |
a1 | a2 | b1 | b2 | Tturn (°C) | |
---|---|---|---|---|---|
Maximum | 17.4467 | 39.7575 | −245.168 | −1965.07 | 880.024 |
Minimum | 8.28401 | 13.7626 | −101.788 | −650.488 | 655.86 |
Mean | 11.601 | 25.75792 | −159.4899 | −1277.308 | 751.5983 |
Median | 11.1733 | 25.8885 | −149.1265 | −1148.075 | 712.3645 |
STD | 2.668668 | 8.14883 | 51.85487 | 441.7946 | 80.23252 |
Mean (g/m2) | CV (%) | STD (g/m2) | RMSE (g/m2) | RRMSE (%) | |
---|---|---|---|---|---|
True yield | 576.76 | 12.52 | 72.24 | ||
SAFY estimated yield | 578.62 | 8.77 | 50.77 | 88 | 15.22 |
SAFY-height estimated yield | 549.20 | 14.91 | 81.94 | 97 | 16.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, J.; Shan, B. Estimation of Winter Wheat Yield from UAV-Based Multi-Temporal Imagery Using Crop Allometric Relationship and SAFY Model. Drones 2021, 5, 78. https://doi.org/10.3390/drones5030078
Song Y, Wang J, Shan B. Estimation of Winter Wheat Yield from UAV-Based Multi-Temporal Imagery Using Crop Allometric Relationship and SAFY Model. Drones. 2021; 5(3):78. https://doi.org/10.3390/drones5030078
Chicago/Turabian StyleSong, Yang, Jinfei Wang, and Bo Shan. 2021. "Estimation of Winter Wheat Yield from UAV-Based Multi-Temporal Imagery Using Crop Allometric Relationship and SAFY Model" Drones 5, no. 3: 78. https://doi.org/10.3390/drones5030078
APA StyleSong, Y., Wang, J., & Shan, B. (2021). Estimation of Winter Wheat Yield from UAV-Based Multi-Temporal Imagery Using Crop Allometric Relationship and SAFY Model. Drones, 5(3), 78. https://doi.org/10.3390/drones5030078