Hierarchical Weighting Vicsek Model for Flocking Navigation of Drones
Abstract
:1. Introduction
2. Related Works
2.1. Vicsek Model
2.2. Coefficient Matrixes
3. Hierarchical Weighting Vicsek Model
3.1. Hierarchical Weighting Mechanism
3.2. Layer Regulation Mechanism
- Scenario (I), Flocking Navigation. This refers to the process where the flocking movement is prompted by the drone that masters the predetermined trajectory.
- Scenario (II), Obstacle Avoidance. This refers to the process where the flocking movement is prompted by the drones that detect the obstacle.
- In scenario (I), the drone acts to move along the trajectory .
- In scenario (II), the drone acts to stay away from the obstacle .
- If a non- drone detects the objective or obstacle, it immediately transforms into an drone and takes corresponding actions required by the specific scenario. For the drone, only if it detects the obstacle during the process of moving to the objective does it change its action to stay away from the obstacle; otherwise, it maintains the previous behavior.
- For the drone that previously detected the obstacle and is no longer detecting the obstacle, if it does not master the objective location, it is transformed into a non- drone and its identity is determined with (7) and (8), otherwise it is also an drone and only changes behavior.
3.3. WVEM-Based Flocking Algorithm
Algorithm 1: WVEM-based flocking algorithm |
|
4. Numerical Simulation and Analysis
4.1. The Verification of Alignment with the Drone
4.2. Analysis of Factors Affecting Alignment Performance
4.2.1. Impacts of Weighting Values
4.2.2. Impacts of Interaction Radius
4.3. Flocking Navigation and Obstacle Avoidance
4.3.1. The Performance of Flocking Navigation
4.3.2. The Performance of Obstacle Avoidance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parrish, J.; Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 1999, 284, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Couzin, I. Collective minds. Nature 2007, 445, 715. [Google Scholar] [CrossRef] [PubMed]
- Vicsek, T.; Zafeiris, A. Collective motion. Phys. Rep. 2012, 517, 71–140. [Google Scholar] [CrossRef] [Green Version]
- Beaver, L.E.; Malikopoulos, A.A. An Overview on Optimal Flocking. arXiv 2020, arXiv:abs/2009.14279. [Google Scholar]
- Hayes, A.T.; Dormiani-Tabatabaei, P. Self-organized flocking with agent failure: Off-line optimization and demonstration with real robots. In Proceedings of the IEEE International Conference on Robotics & Automation, Washington, DC, USA, 11–15 May 2002. [Google Scholar]
- Zhou, H.; Zhao, H.; Han, T.; Huang, H.Q. Cooperative flight and evasion control of uav swarm based on rules. Syst. Eng. Electron. 2016, 38, 1374–1382. [Google Scholar]
- Hoang, D.; Tran, D.M.; Tran, T.S.; Pham, H.A. An adaptive weighting mechanism for reynolds rules-based flocking control scheme. Peerj Comput. Sci. 2021, 7, e388. [Google Scholar] [CrossRef] [PubMed]
- Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel type of phase transition in a system of self-driven drones. Phys. Rev. Lett. 1995, 75, 1226–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglietto, G.; Albano, E.V.; Candia, J. Gregarious versus individualistic behavior in vicsek swarms and the onset of first-order phase transitions. Phys. A Stat. Mech. Appl. 2013, 392, 3240–3247. [Google Scholar] [CrossRef] [Green Version]
- Netzer, G.; Yarom, Y.; Ariel, G. Heterogeneous populations in a network model of collective motion—Sciencedirect. Phys. A Stat. Mech. Appl. 2019, 530, 121550. [Google Scholar] [CrossRef]
- Xue, T.; Li, X.; Grassberger, P.; Chen, L. Swarming transitions in hierarchical societies. Phys. Rev. Res. 2020, 2, 042017. [Google Scholar] [CrossRef]
- Jia, Y.; Vicsek, T. Modelling Hierarchical Flocking. New Phys. Soc. 2019, 21, 093048. [Google Scholar] [CrossRef]
- Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Tarcai, N.; Szörényi, T.; Nepusz, T.; Vicsek, T. Outdoor flocking and formation flight with autonomous aerial robots. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3866–3873. [Google Scholar]
- Reynolds, C.W. Flocks, Herds, and Schools: A Distributed Behavioral Model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34. [Google Scholar] [CrossRef] [Green Version]
Test Case Setup | Method | Convergence Time | Converge to Reference State | ||||
---|---|---|---|---|---|---|---|
Number of Drones | Size | Avg | 25th pctl | 50th pctl | 75th pctl | ||
VEM | 84.13 | 55.00 | 81.00 | 105.50 | No | ||
100 | 4.96 × 4.96 | VEM- | 568.39 | 362.50 | 542.50 | 741.00 | Yes |
WVEM | 113.70 | 83.50 | 97.00 | 122.00 | Yes | ||
VEM | 153.74 | 104.00 | 135.50 | 193.50 | No | ||
200 | 7 × 7 | VEM- | 1236.60 | 701.50 | 969.00 | 1489.50 | Yes |
WVEM | 238.57 | 152.50 | 185.50 | 301.50 | Yes | ||
VEM | 296.30 | 204.50 | 282.50 | 357.00 | No | ||
500 | 11.2 × 11.2 | VEM- | 4097.30 | 1550.50 | 3157.00 | 4333.00 | Yes |
WVEM | 662.36 | 370.50 | 656.00 | 757.00 | Yes |
Convergence Time | |||
---|---|---|---|
Saturation Performance | 236.89 | 30 | 18 (0.6) |
Optimal Performance | 227.95 | 90 | 63 (0.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xiang, X.; Chang, Y.; Yan, C.; Zhou, H.; Tang, D. Hierarchical Weighting Vicsek Model for Flocking Navigation of Drones. Drones 2021, 5, 74. https://doi.org/10.3390/drones5030074
Liu X, Xiang X, Chang Y, Yan C, Zhou H, Tang D. Hierarchical Weighting Vicsek Model for Flocking Navigation of Drones. Drones. 2021; 5(3):74. https://doi.org/10.3390/drones5030074
Chicago/Turabian StyleLiu, Xingyu, Xiaojia Xiang, Yuan Chang, Chao Yan, Han Zhou, and Dengqing Tang. 2021. "Hierarchical Weighting Vicsek Model for Flocking Navigation of Drones" Drones 5, no. 3: 74. https://doi.org/10.3390/drones5030074
APA StyleLiu, X., Xiang, X., Chang, Y., Yan, C., Zhou, H., & Tang, D. (2021). Hierarchical Weighting Vicsek Model for Flocking Navigation of Drones. Drones, 5(3), 74. https://doi.org/10.3390/drones5030074