Evaluation of Unmanned Aerial Vehicles (UAV) as a Tool to Predict Biomass and Carbon of Tectona grandis in Silvopastoral Systems (SPS) in Costa Rica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region of Study and Spacing Test Description
2.2. Dasometric Evaluation of Tress and Number of Trees per Treatment and per Hectare
2.3. Aboveground Biomass and Carbon Content Evaluation in the SPS
2.4. UAV Flight Planning and Processing
- There are no distortions, gaps or any other imperfection that could affect tree counting or crown diameter estimation, among others in the orthomosaic.
- There are distortions, gaps or other imperfections that minimally or partially affect tree counting tasks or crown diameter estimation, among others in the orthomosaic.
- There are distortions, gaps or other types of imperfection that make it impossible to perform tree counting tasks or crown diameter estimation, among others within the orthomosaic.
2.5. Allometric Equations and Selection of Aboveground Biomass Prediction
2.6. Development and Validation of the dbh Prediction Model
2.7. Comparison of Aboveground Biomass and Carbon per Tree (Field Data vs. UAV Data)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Dasometric Variables (Horizontal and Vertical) and Number of Trees per Hectare
3.2. Aboveground Biomass Characterization in Each Spacing
3.3. Aboveground Biomass and Carbon in Each Spacing
3.4. Biomass Equations
3.5. DBH Prediction Model
3.6. Selection of the Orthomosaic
3.7. Comparison of Aboveground Biomass and Carbon per Tree
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Braghiroli, F.L.; Passarini, L. Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities. Curr. For. Rep. 2020, 6, 172–183. [Google Scholar] [CrossRef]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Lauri, P.; Havlik, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Smit, A.; Huijgen, W. Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chem. 2017, 19, 5505–5514. [Google Scholar] [CrossRef] [Green Version]
- Rosillo-Calle, F. A review of biomass energy—Shortcomings and concerns. J. Chem. Technol. Biotechnol. 2016, 91, 1933–1945. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R.; Ortiz-Malavassi, E.; Arias, D. Production and Regression Models for Biomass and Carbon Captured in Gmelina arborea Roxb. Trees in Short Rotation Coppice Plantations in Costa Rica. Forests 2019, 10, 593. [Google Scholar] [CrossRef] [Green Version]
- Mola-Yudego, B.; Arevalo, J.; Díaz-Yáñez, O.; Dimitriou, I.; Haapala, A.; Filho, A.C.F.; Selkimäki, M.; Valbuena, R. Wood biomass potentials for energy in northern Europe: Forest or plantations? Biomass Bioenergy 2017, 106, 95–103. [Google Scholar] [CrossRef]
- Luedeling, E.; Kindt, R.; Huth, N.I.; Koenig, K. Agroforestry systems in a changing climate—challenges in projecting future performance. Curr. Opin. Environ. Sustain. 2014, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, S.; Lubina, P.A. Traditional Agroforestry Systems. Agroforestry 2017, II, 91–119. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Pires, M.F.A.; Müller, M.D. Opportunities and challenges of integrated systems in animal pro-duction: Emphasis on silvopastoral systems. Arch. Latinoam. Prod. Anim. 2017, 25, 25–35. [Google Scholar]
- Dash, J.P.; Marshall, H.M.; Rawley, B. Methods for estimating multivariate stand yields and errors using k-NN and aerial laser scanning. Forestry 2015, 88, 237–247. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Cosenza, D.N.; Rodriguez, L.C.E.; Silva, M.; Tomé, M.; Díaz-Varela, R.A.; Gonzalez-Ferreiro, E. Comparison of ALS- and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations. Int. J. Remote Sens. 2018, 39, 5211–5235. [Google Scholar] [CrossRef]
- Couteron, P.; Pélissier, R.; Nicolini, E.A.; Paget, D. Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J. Appl. Ecol. 2005, 42, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Gong, P.; Cheng, X.; Clinton, N.; Li, Z. Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data. Sensors 2009, 9, 1541–1558. [Google Scholar] [CrossRef] [PubMed]
- Bellarby, J.; Tirado, R.; Leip, A.; Weiss, F.; Lesschen, J.P.; Smith, P. Livestock greenhouse gas emissions and mitigation potential in Europe. Glob. Chang. Biol. 2012, 19, 3–18. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Montagnini, F.; Ibrahim, M.; Restrepo, E.M. Silvopastoral systems and climate change mitigation in Latin America. BOIS For. DES Trop. 2013, 316, 3–16. [Google Scholar] [CrossRef]
- Resende, L.D.O.; Müller, M.D.; Kohmann, M.M.; Pinto, L.F.G.; Junior, L.C.; De Zen, S.; Rego, L.F.G. Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission. Agrofor. Syst. 2020, 94, 893–903. [Google Scholar] [CrossRef]
- Trivelli, L.; Apicella, A.; Chiarello, F.; Rana, R.; Fantoni, G.; Tarabella, A. From precision agriculture to Industry 4.0: Unveiling technological connections in the agrifood sector. Br. Food J. 2019, 121, 1730–1743. [Google Scholar] [CrossRef]
- Berie, H.T.; Burud, I. Application of unmanned aerial vehicles in earth resources monitoring: Focus on evaluating potentials for forest monitoring in Ethiopia. Eur. J. Remote Sens. 2018, 51, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Puliti, S.; Ørka, H.O.; Gobakken, T.; Næsset, E. Inventory of Small Forest Areas Using an Unmanned Aerial System. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.T.; Owari, T.; Furuya, N.; Hiroshima, T. Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests 2020, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Takagi, K.; Yone, Y.; Takahashi, H.; Sakai, R.; Hojyo, H.; Kamiura, T.; Nomura, M.; Liang, N.; Fukazawa, T.; Miya, H.; et al. Forest biomass and volume estimation using airborne LiDAR in a cool-temperate forest of northern Hokkaido, Japan. Ecol. Inform. 2015, 26, 54–60. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Coops, N.C.; White, J.C. Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Curr. For. Rep. 2019, 5, 55–75. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Shu, L.; Zuo, H.; Zhang, B. Experimental observation and assessment of ice conditions with a fixed-wing unmanned aerial vehicle over Yellow River, China. J. Appl. Remote Sens. 2012, 6, 063586. [Google Scholar] [CrossRef]
- Peña, J.M.; de Castro, A.I.; Torres-Sánchez, J.; Andújar, D.; San Martín, C.; Dorado, J.; Fernández-Quintanilla, C.; López-Granados, F. Estimating tree height and biomass of a poplar plantation with image-based UAV technology. AIMS Agric. Food 2018, 3, 313–323. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X. Individual Tree Parameters Estimation for Plantation Forests Based on UAV Oblique Photography. IEEE Access 2020, 8, 96184–96198. [Google Scholar] [CrossRef]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Surový, P.; Ribeiro, N.A.; Panagiotidis, D. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [Google Scholar] [CrossRef]
- Gutiérrez, Á.G.; Schnabel, S.; Contador, F.L.; De Sanjosé, J.J.; Atkinson, A.D.J.; Fernández, M.P. Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV+SfM workflow. Boletin de La Asociacion de Geografos Espanoles. BAGE 2018, 78, 66–88. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Sinha, P.; Taylor, S.; AlQurashi, A.F. Review of the use of remote sensing for biomass estimation to support renewable energy generation. J. Appl. Remote Sens. 2015, 9, 097696. [Google Scholar] [CrossRef]
- Serafín, F.A.-M. Potencial de Mejoramiento Genético en Dipteryx Panamensis Pittier (FABACEAE); Tesis de Maestría, Escuela de Ingeniería Forestal: Cartago, Costa Rica, 2018. [Google Scholar]
- Murillo, O.; Badilla, Y.; Rojas, F. GENFORES, from TEC to international business development. Investiga-TEC 2010, 9, 10–11. [Google Scholar]
- Araya, M.O.; Valverde, Y.B.; Madrigal, W.P.; Granados, C.C.; Gamboa, O.M. Costos de producción de teca (Tectona grandis) y melina (Gmelina arborea) en sistemas silvopastoriles de la zona norte de Costa Rica. Agron. Costarric. 2020, 44, 155–173. [Google Scholar] [CrossRef]
- ASTM International. D4442-07: Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Pérez Cordero, L.D.; Kanninen, M. Aboveground Biomass of Tectona grandis plantations in Costa Rica. J. Trop. For. Sci. 2003, 15, 199–213. [Google Scholar]
- Rodríguez, M.; Arias, D.; Valverde, J.C.; Camacho, D. Ecuaciones alométricas para la estimación de la biomasa arbórea a partir de residuos de plantaciones de Gmelina arborea y Tectona grandis en Guanacaste, Costa Rica. Rev. For. Mesoam. Kurú 2018, 15, 60–66. [Google Scholar] [CrossRef]
- González, Z.M. Estimación de la Biomasa Aérea y la Captura de Carbono en Regeneración Natural de Pinus Maximinoi H. E. Moore, Pinus Oocarpa var. Ochoterenai Mtz. y Quercus sp. en el Norte del Estado de Chiapas-Mexico; CATIE: Turrialba, Costa Rica, 2008; pp. 1–97. [Google Scholar]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Pérez, D.; Kanninen, M. Effect of thinning on stem form and wood characteristics of teak (Tectona grandis) in a humid tropical site in Costa Rica. Silva Fenn. 2005, 39, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Ola-Adams, B. Influences of Spacing on Growth and Yield of Tectona grandis LINN.F (TEAK) and Terminalia Superba ENGL. & Diels (AFARA). J. Trop. For. Sci. 1990, 9, 517–519. [Google Scholar]
- Pachas, A.N.A.; Sakanphet, S.; Soukkhy, O.; Lao, M.; Savathvong, S.; Newby, J.C.; Souliyasack, B.; Keoboualapha, B.; Dieters, M.J. Initial spacing of teak (Tectona grandis) in northern Lao PDR: Impacts on the growth of teak and companion crops. For. Ecol. Manag. 2019, 435, 77–88. [Google Scholar] [CrossRef]
- Tun, T.N.; Guo, J.; Fang, S.; Tian, Y. Planting spacing affects canopy structure, biomass production and stem roundness in poplar plantations. Scand. J. For. Res. 2018, 33, 464–474. [Google Scholar] [CrossRef]
- Benomar, L.; DesRochers, A.; Larocque, G.R. Comparing growth and fine root distribution in monocultures and mixed plantations of hybrid poplar and spruce. J. For. Res. 2013, 24, 247–254. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R.; Arias-Aguilar, D.; Briceño-Elizondo, E. Biomass yield and energy potential of short-rotation energy plantations of Gmelina arborea one year old in Costa Rica. Ind. Crop. Prod. 2016, 82, 63–73. [Google Scholar] [CrossRef]
- Hébert, F.; Krause, C.; Plourde, P.-Y.; Achim, A.; Prégent, G.; Ménétrier, J. Effect of Tree Spacing on Tree Level Volume Growth, Morphology, and Wood Properties in a 25-Year-Old Pinus banksiana Plantation in the Boreal Forest of Quebec. Forests 2016, 7, 276. [Google Scholar] [CrossRef] [Green Version]
- Sanquetta, C.R.; Mora, A.L.; Borsato, R.; Vidal MA, S.; Peixoto, A.M.; Chiaranda, R. Efeito do espaçamento de plantio em reflorestamentos ii. pinus taeda l. em jaguariaív. Rev. Acadêmica Ciências Agrárias Ambient. 2003, 1, 55–61. [Google Scholar]
- Cardoso, D.J.; Lacerda, A.E.B.; Rosot, M.A.D.; Garrastazú, M.C.; Lima, R.T. Influence of spacing regimes on the development of loblolly pine (Pinus taeda L.) in Southern Brazil. For. Ecol. Manag. 2013, 310, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Toillon, J.; Fichot, R.; Dallé, E.; Berthelot, A.; Brignolas, F.; Marron, N. Planting density affects growth and water-use efficiency depending on site in Populus deltoides×P. nigra. For. Ecol. Manag. 2013, 304, 345–354. [Google Scholar] [CrossRef]
- Saglam, S.; Ozdemir, E.; Ozkan, U.Y.; Demirel, T.; Makineci, E. Biomass estimation of aboveground tree components for Turkey oak (Quercus cerris L.) in south-eastern Turkey. Environ. Monit. Assess. 2020, 192, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Widagdo, F.R.A.; Xie, L.; Dong, L.; Li, F. Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China. Glob. Ecol. Conserv. 2020, 23, e01111. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, X.; Wu, R.; Han, H.; Kang, F.; Zhu, J.; Tian, P. Effect of intraspecific competition on biomass partitioning of Larix principis-rupprechtii. J. Plant Interact. 2017, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Eloy, E.; Da Silva, D.A.; Caron, B.O.; Elli, E.F.; Schwerz, F. Effect of age and spacing on biomass production in forest plantations. Rev. Árvore 2018, 42. [Google Scholar] [CrossRef]
- Berra, E. Individual tree crown detection and delineation across a woodland using leaf-on and leaf-off imagery from a UAV consumer-grade camera. J. Appl. Remote Sens. 2020, 14, 1. [Google Scholar] [CrossRef]
- Mlenek, D.C.; Corte AP, D.; Rodrigues, D.; Sanqueta, C.R. Systematic Review of Literature on Tree Detection Using Remote Sensing. BIOFIX Sci. J. 2020, 5, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J.; et al. Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Grznárová, A.; Mokroš, M.; Surový, P.; Slavík, M.; Pondelík, M.; Merganič, J. THE CROWN DIAMETER ESTIMATION FROM FIXED WING TYPE OF UAV IMAGERY. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Hernandez, J.; Gonzalez-Ferreiro, E.; Sarmento, A.; Silva, J.; Nunes, A.; Correia, A.C.; Fontes, L.; Tomé, M.; Díaz-Varela, R.A. Short Communication. Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal. For. Syst. 2016, 25, eSC09. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, K.; Yonehara, T.; Itoh, M.; Kosugi, Y. Estimating Tree Height and Diameter at Breast Height (DBH) from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for a Japanese Cypress (Chamaecyparis obtusa) Forest. Remote Sens. 2017, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Panagiotidis, D.; Abdollahnejad, A.; Surový, P.; Chiteculo, V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017, 38, 2392–2410. [Google Scholar] [CrossRef]
- Yun, T.; Jiang, K.; Hou, H.; An, F.; Chen, B.; Jiang, A.; Li, W.; Xue, L. Rubber tree crown segmentation and property retrieval using ground-based mobile LiDAR after natural disturbances. Remote Sens. 2019, 11, 903. [Google Scholar] [CrossRef] [Green Version]
- Wagner, F.H.; Ferreira, M.P.; Sanchez, A.; Hirye, M.C.; Zortea, M.; Gloor, E.; Phillips, O.; Filho, C.R.D.S.; Shimabukuro, Y.E.; Aragão, L.E. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 362–377. [Google Scholar] [CrossRef]
UAV | Flight Speed and Time | Lens | Camera Sensor | Image Size |
---|---|---|---|---|
Phantom 4 Pro model. | 50 a 72 km/h 20–30 min Operation distance: 3 km | FOV 84° 8.8 mm/24 mm (35 mm format equivalent) f/2.8-f/11 auto focus at 1 m-∞ | 1′′ CMOS Effective pixels: 20M | 3:2 Aspect Ratio: 5472 × 3648 4:3 Aspect Ratio: 4864 × 3648 16:9 Aspect Ratio: 5472 × 3078 |
Name | Flight Level (m) | Lateral Overlap (%) | Forward Overlap (%) | Layout Design | Ground Sample Distance (cm) |
---|---|---|---|---|---|
Flight 1 | 80 | 70 | 70 | 3D | 2.22 |
Flight 2 | 100 | 70 | 70 | 3D | 2.77 |
Flight 3 | 120 | 70 | 70 | 3D | 3.32 |
Spacing (m) | Trees/Treatment | Trees/ha | Diameter at 1.30 m (cm) | Total Height (m) |
---|---|---|---|---|
2.5 × 1.0 | 24 | 888 | 17.1 A* (2.6) | 15.2 A (1.1) |
2.5 × 2.0 | 16 | 496 | 17.7 A (2.4) | 15.3 A (1.4) |
2.5 × 3.0 | 17 | 357 | 19.7 B (1.2) | 15.0 A (1.6) |
Spacing (m) | Trunk (kg/ha) | Leaves (kg/ha) | Branches (kg/ha) | Above Ground Biomass (kg/ha) |
2.5 × 1.0 | 21,067 A* (10,391) | 1448 A (1044) | 3550 A (2188) | 26,065 A (12,965) |
2.5 × 2.0 | 16,533 A (6684) | 1079 A (532) | 3436 A (1374) | 21,049 A (8239) |
2.5 × 3.0 | 14,611 A (4188) | 1057 A (494) | 3557 A (1652) | 19,226 A (5615) |
Spacing (m) | Trunk (kg/tree) | Leaves (kg/tree) | Branch (kg/tree) | Above Ground Biomass (kg/tree) |
---|---|---|---|---|
2.5 × 1.0 | 23.1 A* (9.6) | 1.6 A (1.0) | 3.8 A (2.2) | 28.5 A (12.1) |
2.5 × 2.0 | 33.6 AB (14.1) | 2.2 A (1.0) | 6.9 AB (2.6) | 42.7 AB (17.0) |
2.5 × 3.0 | 40.8 A (11.3) | 2.9 A (1.3) | 9.9 B (4.6) | 53.7 B (15.2) |
Above Ground Biomass (Observed) | Pérez and Kanninen Equation [39] | Rodríguez et al. Equation [40] | General Equation [41] | Chave et al. Equation [42] |
---|---|---|---|---|
Average | 42.3 | 60.9 | 58.4 | 44.6 |
Pvalue | n/a | <0.0001 | 0.0037 | 0.2807 |
Significance | n/a | * | * | ** |
Model | R2 | Syx | FI | Se | %CV |
---|---|---|---|---|---|
dbh = 9.76 + 2.65 × dc | 0.45 | 1.83 | 0.45 | 1.83 | 10.02 |
dbh = 7.70 + 9.20 × ln (dc) | 0.51 | 1.74 | 0.51 | 1.74 | 9.48 |
dbh = 2.29 × dc0.52 | 0.53 | 0.09 | 0.47 | 1.79 | 9.78 |
Flight | Ground Sample Distance (GSD) | Orthomosaic Area | Orthomosaic Quality |
---|---|---|---|
1 | PF | PF | PF |
2 | 2.77 | 4.70 | 1 |
3 | 3.32 | 4.65 | 1 |
Parameter | AGB Field (kg/tree) | AGB UAV (kg/tree) | Carbon Field (kg/tree) | Carbon UAV (kg/tree) |
---|---|---|---|---|
Average | 113.53 | 86.18 | 52.32 | 39.71 |
p-value | <0.0001 * | <0.0001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Cole, J.; Ortiz-Malavassi, E.; Moya, R.; Murillo, O. Evaluation of Unmanned Aerial Vehicles (UAV) as a Tool to Predict Biomass and Carbon of Tectona grandis in Silvopastoral Systems (SPS) in Costa Rica. Drones 2021, 5, 47. https://doi.org/10.3390/drones5020047
Hernández-Cole J, Ortiz-Malavassi E, Moya R, Murillo O. Evaluation of Unmanned Aerial Vehicles (UAV) as a Tool to Predict Biomass and Carbon of Tectona grandis in Silvopastoral Systems (SPS) in Costa Rica. Drones. 2021; 5(2):47. https://doi.org/10.3390/drones5020047
Chicago/Turabian StyleHernández-Cole, Javier, Edgar Ortiz-Malavassi, Roger Moya, and Olmán Murillo. 2021. "Evaluation of Unmanned Aerial Vehicles (UAV) as a Tool to Predict Biomass and Carbon of Tectona grandis in Silvopastoral Systems (SPS) in Costa Rica" Drones 5, no. 2: 47. https://doi.org/10.3390/drones5020047
APA StyleHernández-Cole, J., Ortiz-Malavassi, E., Moya, R., & Murillo, O. (2021). Evaluation of Unmanned Aerial Vehicles (UAV) as a Tool to Predict Biomass and Carbon of Tectona grandis in Silvopastoral Systems (SPS) in Costa Rica. Drones, 5(2), 47. https://doi.org/10.3390/drones5020047