Comparison of Outdoor Compost Pile Detection Using Unmanned Aerial Vehicle Images and Various Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Production of UAV Orthoimages and Vegetation Indices
2.3. OCP Boundary Division and Spectral Characteristic Analysis
2.4. Prediction of OCP Classification Using Machine Learning
3. Results
3.1. Spectral Characteristics by OCP Type
3.2. Comparison of Machine Learning Accuracy
3.3. Comparison of Predicted OCP Detection Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- García-Nieto, P.K.; García-Gonzalo, E.; Alonso Fernández, J.R.; Díaz Muñiz, C. Using evolutionary multivariate adaptive regression splines approach to evaluate the eutrophication in the Pozón de la Dolores lake (Northern Spain). Ecol. Eng. 2016, 94, 135–151. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhang, J.; Cai, C.; Cai, Z.; Li, X.; Wang, R. Coupling of non-point source pollution and soil characteristics covered by Phyllostachys edulis stands in hilly water source area. J. Environ. Manag. 2020, 268, 110657. [Google Scholar] [CrossRef]
- Yang, S.; Chen, X.; Lu, J.; Hou, X.; Li, W.; Xu, Q. Impacts of agricultural topdressing practices on cyanobacterial bloom phenology in an early eutrophic plateau Lake, China. J. Hydrol. 2021, 594, 125952. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observation. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Jung, E.S.; Kim, G.B.; Kim, H.J.; Jang, K.M.; Park, J.S.; Kim, Y.J.; Hong, S.C. A preliminary study on livestock wastewater treatment by electrolysis and electro-coagulation processes using renewable energy. J. Korean Soc. Urban Environ. 2017, 17, 4350. [Google Scholar]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Jee, J.B.; Min, J.S.; Lee, Y.H.; Chung, J.S.; You, C.H. Studies on the predictability of heavy rainfall using prognostic variables in numerical model. Atmosphere 2016, 26, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.H.; Jung, Y.S.; Yang, J.E.; Ok, Y.S.; Oh, S.; Yoo, K.Y.; Yang, S.C. Assessment of pollutant loads from alpine agricultural practices in Nakdong River Basin. Korean J. Environ. Agric. 2007, 26, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Park, G.; Park, K.; Song, B. Spatio-temporal change monitoring of outside manure piles using unmanned aerial vehicle images. Drones 2020, 5, 1. [Google Scholar] [CrossRef]
- Hong, S.G.; Kim, J.T. Assessment of leachate characteristics of manure compost under rainfall simulation. J. Korean Soc. Rural Plan. 2001, 7, 65–73. [Google Scholar]
- Park, G.U.; Park, K.H.; Moon, B.H.; Song, B.G. Monitoring of non-point pollutant sources management status and load changes of compositing in a rural area based on UAV. J. Korean Assoc. Geogr. Inf. Stud. 2019, 22, 1–14. [Google Scholar]
- Grussenmeyer, P.; Landes, T.; Voegtle, T.; Ringle, K. Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. ISPRS 2008, 37, 213–218. [Google Scholar]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 115. [Google Scholar] [CrossRef]
- Reshetyuk, Y.; Mårtensson, S. Generation of Highly Accurate Digital Elevation Models with Unmanned Aerial Vehicle. Phtogramm. Rec. 2016, 31, 113–256. [Google Scholar] [CrossRef]
- Dall’Asta, E.; Forlani, G.; Roncella, R.; Santise, M.; Diotri, F.; Morra di Cella, U. Unmanned aerial systems and DSM matching for rock glacier monitoring. ISPRS J. Photogramm. Remote Sens. 2017, 127, 102114. [Google Scholar] [CrossRef]
- Martinez-Carricondo, P.; Agra-Vega, F.; Carvajal-Ramirez, F.; Mesas-Carrascosa, F.J.; Garcia-Ferrer, A.; Perez-Porras, F.J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 110. [Google Scholar] [CrossRef]
- Song, B.; Park, K. Verification of accuracy of unmanned aerial vehicle (UAV) land surface temperature images using in-situ data. Remote Sens. 2020, 12, 288. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wu, X.; Wang, S. Object-oriented vegetation classification method based on UAV and satellite image fusion. Procedia Comput. Sci. 2020, 174, 609–615. [Google Scholar] [CrossRef]
- Miranda, V.; Pina, P.; Heleno, S.; Vieira, G.; Mora, C.; Schaefer, C.E.G.R. Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys. Sci. Total Environ. 2020, 704, 135295. [Google Scholar] [CrossRef]
- Andrade, A.M.; Michel, R.F.M.; Bremer, U.F.; Schaefer, C.E.G.R.; Simões, J.C. Relationship between solar radiation and surface distribution of vegetation in Fildes Peninsula and Ardley Island, Maritime Antarctica. Int. J. Remote Sens. 2018, 39, 2238–2254. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogramm. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Ventura, D.; Bonifazi, A.; Gravian, M.F.; Belluscio, A.; Ardizzone, G. Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA). Remote Sens. 2018, 10, 1331. [Google Scholar] [CrossRef] [Green Version]
- Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE 2013, 8, e77151. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Janiec, P.; Gadal, S. A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the North-Eastern Siberia. Remote Sens. 2020, 12, 4157. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Emanuele, P.; Nives, G.; Andrea, C.; Paolo, C.C.D.; Maria, L.A. Bathymetric detection of fluvial environments through UASs and machine learning systems. Remote Sens. 2020, 12, 4148. [Google Scholar] [CrossRef]
- Kerf, T.D.; Gladines, J.; Sels, S.; Vanlanduit, S. Oil spill detecting using machine learning and infrared images. Remote Sens. 2020, 12, 4090. [Google Scholar] [CrossRef]
- Culman, M.; Delalieux, S.; Tricht, K.V. Individual palm tree detection using deep learning on RGB imagery to support tree inventory. Remote Sens. 2020, 12, 3476. [Google Scholar] [CrossRef]
- Hassanijalilian, O.; Igathinathane, C.; Bajwa, S.; Nowatzki, J. Rating iron deficiency in soybean using image processing and Decision-Tree based models. Remote Sens. 2020, 12, 4143. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Morris, R.H.; Carvalho, R.C.; Roder, N.; Barlow, P.; Mills, K.; Wang, L. Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102085. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium; NASA: Washington, DC, USA, 1974; pp. 301–317. [Google Scholar]
- Drone Aerial Mapping and Survey. Available online: http://www.aeroeye.com.au (accessed on 12 October 2020).
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Huerta, M.; Rodriguez-Gonzalvez, P.; Rainey, K.M. Yield prediction by machine learning from UAS-based multi-sensor data fusion in soybean. Plant Methods 2020, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Carrio, A.; Sampedro, C.; Rodriquez-Ramos, A.; Campoy, P. A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles. J. Sens. 2017, 2017. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yag, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Envrion. 2020, 241, 111716. [Google Scholar] [CrossRef]
UAV Aircraft | Camera Sensor | Specifications |
---|---|---|
Inspire 1 | Zenmuse X3 | 4K Video and 12 MP still image capture Sony EXMOR 1/2.3″ CMOS sensor 3-Axis gimbal camera stabilization Wide 94° field of view (FOV) Lens |
FLIR Vue pro R | Size: 58 × 45 mm Spectral range: 7.5~13.5 μm Accuracy: ±5 °C Weight: 92~113 g Operating temp. range: −55~+95 °C Field of View(FOV): 6.8 mm, 45° × 35° Resolution: 336 × 256 | |
3DR-solo | RedEdge-M | Weight: 150 g Dimensions: 12.1 cm × 6.6 cm × 4.6 cm Ground sample distance: 8.2 cm/pixel (per band) at 120 m Capture speed: 1 capture per second (all bands), 12-bit RAW |
Name | Abbreviation | Formula | Ref. |
---|---|---|---|
Blue | Rb | Rb | |
Green | Rg | Rg | |
Red | Rr | Rr | |
RedEdge | Rre | Rre | |
Near-infrared | Rnir | Rnir | |
Normalized Difference Vegetation Index | NDVI | (Rnir − Rr)/(Rnir + Rr) | (1) |
Enhance Normalized Difference Vegetation Index | ENDVI | [(Rnir + Rg) − (2 × Rb)]/[(Rnir + Rg) + (2 × Rb)] | (2) |
Normalized Difference RedEdge Index | NDRE | (Rnir − Rre)/(Rnir + Rre) | (3) |
Green NDVI | GNDVI | (Rnir − Rg)/(Rnir + Rg) | (4) |
Month | OCP | OCP (covered) | Others | ||
---|---|---|---|---|---|
August | Original | 117.50 | 655.75 | 28,873.75 | |
Predicted | non SVM | 104.70 | 426.05 | 29,116.25 | |
Decision tree | 101.75 | 684.00 | 28,861.25 | ||
Random forest | 112.25 | 606.25 | 28,928.50 | ||
k-NN | 106.20 | 575.05 | 28,965.75 | ||
Difference | non SVM | 12.80 | 229.70 | −242.50 | |
Decision tree | 15.75 | −28.25 | 12.50 | ||
Random forest | 5.25 | 49.50 | −54.75 | ||
k-NN | 11.30 | 80.70 | −92.00 | ||
October | Original | 181.50 | 368.50 | 29,450.00 | |
Predicted | non SVM | 18.75 | 164.50 | 29,816.75 | |
Decision tree | 35.00 | 204.25 | 29,760.75 | ||
Random forest | 147.75 | 298.75 | 29,553.50 | ||
k-NN | 92.50 | 196.50 | 29,711.00 | ||
Difference | non SVM | 162.75 | 204.00 | −366.75 | |
Decision tree | 146.50 | 164.25 | −310.75 | ||
Random forest | 33.75 | 69.75 | −103.50 | ||
k-NN | 89.00 | 172.00 | −261.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.; Park, K. Comparison of Outdoor Compost Pile Detection Using Unmanned Aerial Vehicle Images and Various Machine Learning Techniques. Drones 2021, 5, 31. https://doi.org/10.3390/drones5020031
Song B, Park K. Comparison of Outdoor Compost Pile Detection Using Unmanned Aerial Vehicle Images and Various Machine Learning Techniques. Drones. 2021; 5(2):31. https://doi.org/10.3390/drones5020031
Chicago/Turabian StyleSong, Bonggeun, and Kyunghun Park. 2021. "Comparison of Outdoor Compost Pile Detection Using Unmanned Aerial Vehicle Images and Various Machine Learning Techniques" Drones 5, no. 2: 31. https://doi.org/10.3390/drones5020031
APA StyleSong, B., & Park, K. (2021). Comparison of Outdoor Compost Pile Detection Using Unmanned Aerial Vehicle Images and Various Machine Learning Techniques. Drones, 5(2), 31. https://doi.org/10.3390/drones5020031