Forecasting Tsunami Hazards Using Ocean Bottom Sensor Data and Classification Predictive Modeling †
Abstract
:1. Introduction
2. Tsunami Data and Classification Model
2.1. Study Area and S-Net Sensors
2.2. Data and Statistical Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imamura, F.; Boret, S.P.; Suppasri, A.; Muhari, A. Recent Occurrences of Serious Tsunami Damage and the Future Challenges of Tsunami Disaster Risk Reduction. Prog. Disaster Sci. 2019, 1, 100009. [Google Scholar]
- An, C.; Liu, H.; Ren, Z.; Yuan, Y. Prediction of Tsunami Waves by Uniform Slip Models. J. Geophys. Res. Ocean. 2018, 123, 8366–8382. [Google Scholar] [CrossRef]
- Maeda, T.; Obara, K.; Shinohara, M.; Kanazawa, T.; Uehira, K. Successive Estimation of a Tsunami Wavefield without Earthquake Source Data: A Data Assimilation Approach toward Real-time Tsunami Forecasting. Geophys. Res. Lett. 2015, 42, 7923–7932. [Google Scholar] [CrossRef]
- Wang, Y.; Su, H.Y.; Ren, Z.; Ma, Y. Source Properties and Resonance Characteristics of the Tsunami Generated by the 2021 M8.2 Alaska Earthquake. J. Geophys. Res. Ocean. 2022, 123, e2021JC018308. [Google Scholar] [CrossRef]
- Geist, E.L. Complex Earthquake Rupture and Local Tsunami. J. Geophys. Res. Solid Earth 2002, 107, ESE-2. [Google Scholar] [CrossRef]
- Li, Y.; Goda, K. Hazard and Risk-Based Tsunami Early Warning Algorithms for Ocean Bottom Sensor S-Net System in Tohoku, Japan, Using Sequential Multiple Linear Regression. Geosciences 2022, 12, 350. [Google Scholar] [CrossRef]
- Goda, K. Multi-hazard Parametric Catastrophe Bond Trigger Design for Subdection Earthquakes and Tsunamis. Earthq. Spectra 2021, 37, 1827–1848. [Google Scholar] [CrossRef]
- Goto, C.; Ogawa, Y.; Shuto, N.; Imamura, F. Numerical Method of Tsunami Simulation with the Leap-frog Scheme. IOC Man. Guides 1997, 35, 130. [Google Scholar]
- Santos, A.; Fernandes, J.; Mileu, N. Tsunami Hazard Assessment at Oeiras Municipality, Portugal. J. Mar. Sci. Eng. 2022, 10, 1120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y. Forecasting Tsunami Hazards Using Ocean Bottom Sensor Data and Classification Predictive Modeling. Proceedings 2023, 87, 7. https://doi.org/10.3390/IECG2022-14266
Li Y. Forecasting Tsunami Hazards Using Ocean Bottom Sensor Data and Classification Predictive Modeling. Proceedings. 2023; 87(1):7. https://doi.org/10.3390/IECG2022-14266
Chicago/Turabian StyleLi, Yao. 2023. "Forecasting Tsunami Hazards Using Ocean Bottom Sensor Data and Classification Predictive Modeling" Proceedings 87, no. 1: 7. https://doi.org/10.3390/IECG2022-14266