Assessment of Drought in Agricultural Areas by Combining Meteorological and Remote Sensing Data †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Proposed Method
2.3.1. Identification of Agricultural Areas
2.3.2. Standard Precipitation Index (SPI)
2.3.3. Composite Drought Index
2.3.4. Validation
3. Implementation and Results
3.1. SPI Results
3.2. CDI Results
3.3. Accuracy Assessment
3.3.1. Correlation between the CDI and SPI Indices
3.3.2. Correlation between CDI and Evaporation Field Data
3.3.3. Correlation between the CDI and Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senay, G.; Velpuri, N.M.; Bohms, S.; Budde, M.; Young, C.; Rowland, J.; Verdin, J. Drought monitoring and assessment: Remote sensing and modeling approaches for the famine early warning systems network. In Hydro-Meteorological Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 233–262. [Google Scholar]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought monitoring and analysis: Standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Smakhtin, V.U.; Schipper, E.L.F. Droughts: The impact of semantics and perceptions. Water Policy 2008, 10, 131–143. [Google Scholar] [CrossRef]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Shi, S.; Yao, F.; Zhang, J.; Yang, S. Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia. IEEE Access 2020, 8, 30050–30059. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, R.; Ma, Y.; Sang, Y.; Meng, H.; Gao, S. Annual variation in PDSI since 1897 AD in the Tengger Desert, Inner Mongolia, China, as recorded by tree-ring data. J. Arid. Environ. 2013, 98, 20–26. [Google Scholar] [CrossRef]
- Yan, H.; Wang, S.Q.; Wang, J.B.; Lu, H.Q.; Guo, A.H.; Zhu, Z.C.; Myneni, R.B.; Shugart, H.H. Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982–2011 by using PDSI indices and agriculture drought survey data. J. Geophys. Res. Atmos. 2016, 121, 2283–2298. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.-L. Comparison of drought indices in the analysis of spatial and temporal changes of climatic drought events in a basin. Environ. Sci. Pollut. Res. 2019, 26, 10695–10707. [Google Scholar] [CrossRef]
- Jain, S.K.; Keshri, R.; Goswami, A.; Sarkar, A.; Chaudhry, A. Identification of drought-vulnerable areas using NOAA AVHRR data. Int. J. Remote Sens. 2009, 30, 2653–2668. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Yu, W.; Wang, X.; Jia, S. Validation of the MODIS NDVI products in different land-use types using in situ measurements in the Heihe River Basin. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1649–1653. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.; Chen, C.; Chang, L.; Minh, V.Q. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Idso, S.; Jackson, R.; Pinter, P., Jr.; Reginato, R.; Hatfield, J. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Kumar, N.; Poddar, A.; Shankar, V.; Ojha, C.S.P.; Adeloye, A.J. Crop water stress index for scheduling irrigation of Indian mustard (Brassica juncea) based on water use efficiency considerations. J. Agron. Crop Sci. 2020, 206, 148–159. [Google Scholar] [CrossRef]
- Hu, X.; Ren, H.; Tansey, K.; Zheng, Y.; Ghent, D.; Liu, X.; Yan, L. Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries. Agric. For. Meteorol. 2019, 279, 107707. [Google Scholar] [CrossRef]
- Carlson, T.N.; Perry, E.M.; Schmugge, T.J. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. Agric. For. Meteorol. 1990, 52, 45–69. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl. Comput. Intell. Soft Comput. 2012, 2012, 6. [Google Scholar] [CrossRef]
- Snavely, K.N. Scene Reconstruction and Visualization from Internet Photo Collections; University of Washington: Seattle, WA, USA, 2008. [Google Scholar]
- Waseem, M.; Ajmal, M.; Kim, T.-W. Development of a new composite drought index for multivariate drought assessment. J. Hydrol. 2015, 527, 30–37. [Google Scholar] [CrossRef]
- Lin, M.; Chu, C.M.; Tsai, B. Drought risk assessment in western Inner-Mongolia. Int. J. Environ. Res. 2011, 5, 139–148. [Google Scholar]
- da Silva, V.D.P.R. On climate variability in Northeast of Brazil. J. Arid. Environ. 2004, 58, 575–596. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
Station Name | Log | Lat | Elevation |
---|---|---|---|
Daran | 440813 | 3647769 | 1563 |
Isfahan | 566337 | 3597985 | 1550 |
Isfahan Airport | 580856 | 3623255 | 1543 |
Golpaygan | 433405 | 3703253 | 1850 |
Meymeh | 515492 | 3699340 | 2012 |
Shahreza | 576577 | 3538690 | 1859 |
Kabootar Abad | 578269 | 3598012 | 1543 |
SPI | SPI-1 | SPI-3 | SPI-6 | SPI-12 | |
---|---|---|---|---|---|
Month | |||||
Feb | 0.75 | 0.69 | 0.45 | 0.35 | |
May | 0.65 | 0.30 | 0.19 | 0.69 | |
Aug | 0.81 | 0.63 | 0.35 | 0.47 | |
Dec | 0.68 | 0.63 | 0.65 | 0.42 |
Year | 2017 | 2018 | 2018 | |
---|---|---|---|---|
Month | ||||
Feb | 0.25 | - | - | |
Mar | 0.35 | 0.62 | 0.68 | |
Apr | 0.57 | 0.42 | 0.39 | |
Age | 0.55 | 0.70 | - | |
Dec | - | 0.58 | 0.48 |
Year | 2017 | 2018 | 2018 | |
---|---|---|---|---|
Month | ||||
Mar | 0.52 | 0.65 | 0.45 | |
Apr | 0.48 | 0.42 | 0.39 | |
Jun | 0.40 | 0.56 | 0.45 | |
Age | 0.55 | 0.70 | 0.50 | |
Dec | 0.35 | 0.40 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazini Ahghar, E.; Shah-Hosseini, R.; Nazari, B.; Dodangeh, P.; Mousavi, S.M. Assessment of Drought in Agricultural Areas by Combining Meteorological and Remote Sensing Data. Proceedings 2023, 87, 28. https://doi.org/10.3390/IECG2022-13960
Vazini Ahghar E, Shah-Hosseini R, Nazari B, Dodangeh P, Mousavi SM. Assessment of Drought in Agricultural Areas by Combining Meteorological and Remote Sensing Data. Proceedings. 2023; 87(1):28. https://doi.org/10.3390/IECG2022-13960
Chicago/Turabian StyleVazini Ahghar, Ehsan, Reza Shah-Hosseini, Borzoo Nazari, Parisa Dodangeh, and Seyyed Morteza Mousavi. 2023. "Assessment of Drought in Agricultural Areas by Combining Meteorological and Remote Sensing Data" Proceedings 87, no. 1: 28. https://doi.org/10.3390/IECG2022-13960
APA StyleVazini Ahghar, E., Shah-Hosseini, R., Nazari, B., Dodangeh, P., & Mousavi, S. M. (2023). Assessment of Drought in Agricultural Areas by Combining Meteorological and Remote Sensing Data. Proceedings, 87(1), 28. https://doi.org/10.3390/IECG2022-13960