Estimating Source Apportionment of Heavy Metals Contamination in Surface Soil Based on a Positive Matrix Factorization (PMF) Model around Cerrito Blanco in San Luis Potosi, Mexico †
Abstract
:1. Introduction
- (i)
- to estimate the heavy metal concentrations in the surface soil around Cerrito Blanco, Matehuala, San Luis Potosi, Mexico;
- (ii)
- to identify the possible pollution sources of the heavy metals using the PMF model;
- (iii)
- to analyse the spatial distribution patterns of source factors of heavy metals.
2. Study Area
3. Materials and Methods
3.1. Soil Sampling and Chemical Analysis
3.2. Positive Matrix Factorization Model (PMF) Model
3.3. Data Processing and Analysis
4. Results
4.1. Descriptive Statistics of Heavy Metals Concentrations in Soils
4.2. Source Apportionment of Heavy Metals by PMF
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Carey, M.; Yang, L.; Chen, L.-D.; Li, S.-J.; Zhao, F.-K.; Zhu, Y.-G.; Meharg, C.; Meharg, A.A. Source Identification of Trace Elements in Peri-urban Soils in Eastern China. Expo. Health 2018, 11, 195–207. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.; Wang, L.; Yu, H.; Li, B.; Liu, J. Source Apportionment and Geographic Distribution of Heavy Metals and as in Soils and Vegetables Using Kriging Interpolation and Positive Matrix Factorization Analysis. Int. J. Environ. Res. Public Health 2022, 19, 485. [Google Scholar] [CrossRef]
- Ha, H.; Olson, J.R.; Bian, L.; Rogerson, P.A. Analysis of Heavy Metal Sources in Soil Using Kriging Interpolation on Principal Components. Environ. Sci. Technol. 2014, 48, 4999–5007. [Google Scholar] [CrossRef]
- Li, Y.; Duan, Z.; Liu, G.; Kalla, P.; Scheidt, D.; Cai, Y. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure. Environ. Sci. Technol. 2015, 49, 9714–9723. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y. An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Sci. Total. Environ. 2018, 646, 19–28. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Liu, J.; Liang, J.; Yuan, X.; Zeng, G.; Yuan, Y.; Wu, H.; Huang, X.; Liu, J.; Hua, S.; Li, F.; et al. An integrated model for assessing heavy metal exposure risk to migratory birds in wetland ecosystem: A case study in Dongting Lake Wetland, China. Chemosphere 2015, 135, 14–19. [Google Scholar] [CrossRef]
- Saha, A.; Gupta, B.S.; Patidar, S.; Martínez-Villegas, N. Spatial distribution based on optimal interpolation techniques and assessment of contamination risk for toxic metals in the surface soil. J. S. Am. Earth Sci. 2022, 115, 103763. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Q.; Hua, P.; Jiang, S.; Li, R.; Li, Y.; Fan, G.; Zhang, J.; Krebs, P. Characterizing the anthropogenic-induced trace elements in an urban aquatic environment: A source apportionment and risk assessment with uncertainty consideration. J. Environ. Manag. 2020, 275, 111288. [Google Scholar] [CrossRef]
- Agyeman, P.C.; John, K.; Kebonye, N.M.; Borůvka, L.; Vašát, R.; Drábek, O. A geostatistical approach to estimating source apportionment in urban and peri-urban soils using the Czech Republic as an example. Sci. Rep. 2021, 11, 23615. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, L.-M.; Wen, H.-H.; Luo, J.; Wang, Q.-S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total. Environ. 2018, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yin, A.; Yang, X.; Fan, M.; Shao, S.; Wu, J.; Wu, P.; Zhang, M.; Gao, C. Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecol. Indic. 2020, 122, 107233. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Li, J.; Wu, J.; Wang, J. Source apportionment of trace metals in river sediments: A comparison of three methods. Environ. Pollut. 2016, 211, 28–37. [Google Scholar] [CrossRef]
- Martínez-Villegas, N.; Hernández, A.; Meza-Figueroa, D.; Gupta, B.S. Distribution of Arsenic and Risk Assessment of Activities on Soccer Pitches Irrigated with Arsenic-Contaminated Water. Int. J. Environ. Res. Public Health 2018, 15, 1060. [Google Scholar] [CrossRef]
- Razo, I.; Carrizales, L.; Castro, J.; Barriga, F.D.; Monroy, M. Arsenic and Heavy Metal Pollution of Soil, Water and Sediments in a Semi-Arid Climate Mining Area in Mexico. Water Air Soil Pollut. 2004, 152, 129–152. [Google Scholar] [CrossRef]
- Martínez-Villegas, N.; Briones-Gallardo, R.; Ramos-Leal, J.A.; Avalos-Borja, M.; Castañón-Sandoval, A.D.; Razo-Flores, E.; Villalobos, M. Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem. Environ. Pollut. 2013, 176, 114–122. [Google Scholar] [CrossRef]
- Ruíz-Huerta, E.A.; Varela, A.D.L.G.; Gómez-Bernal, J.M.; Castillo, F.; Avalos-Borja, M.; SenGupta, B.; Martínez-Villegas, N. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico. J. Hazard. Mater. 2017, 339, 330–339. [Google Scholar] [CrossRef]
- Saha, A.; Gupta, B.S.; Patidar, S.; Martínez-Villegas, N. Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils. Chem. Proc. 2022, 10, 59. [Google Scholar] [CrossRef]
- Vercoutere, K.; Fortunati, U.; Muntau, H.; Griepink, B.; Maier, E.A. The certified reference materials CRM 142 R light sandy soil, CRM 143 R sewage sludge amended soil and CRM 145 R sewage sludge for quality control in monitoring environmental and soil pollution. Anal. Bioanal. Chem. 1995, 352, 197–202. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Method 200.7: Revision 4.4, Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; United States Environmental Protection Agency: Cincinnati, OH, USA, 1994. [Google Scholar]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Z.; Ren, H.; Wang, D.; Wang, J.; Wu, Z.; Cai, P. Spatial Distribution and Source Apportionment of Heavy Metals in the Topsoil of Weifang City, East China. Front. Environ. Sci. 2022, 10, 469. [Google Scholar] [CrossRef]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Hansen, H.C.B.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Dt, O.; Aa, A.; Oe, O. Heavy Metal Concentrations in Plants and Soil along Heavy Traffic Roads in North Central Nigeria. J. Environ. Anal. Toxicol. 2015, 5, 1. [Google Scholar] [CrossRef]
- Kosiorek, M.; Wyszkowski, M. Remediation of Cobalt-Contaminated Soil Using Manure, Clay, Charcoal, Zeolite, Calcium Oxide, Main Crop (Hordeum vulgare L.), and After-Crop (Synapis alba L.). Minerals 2020, 10, 429. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales. Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. 2007, pp. 35–96. Available online: https://www.gob.mx/cms/uploads/attachment/file/135331/48.-_NORMA_OFICIAL_MEXICANA_NOM-147-SEMARNAT-SSA1-2004.pdf (accessed on 8 October 2022).
- Wilding, L.P. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Proceedings of the Soil spatial var-iability, Las Vegas, NV, USA, 30 November–1 December 1984; pp. 166–194. [Google Scholar]
- Castro-Larragoitia, J.; Kramar, U.; Puchelt, H. 200 years of mining activities at La Paz/San Luis Potosí/Mexico—Consequences for environment and geochemical exploration. J. Geochem. Explor. 1997, 58, 81–91. [Google Scholar] [CrossRef]
- Manz, M.; Castro, L. The environmental hazard caused by smelter slags from the Sta. Maria de la Paz mining district in Mexico. Environ. Pollut. 1997, 98, 7–13. [Google Scholar] [CrossRef]
Metals | As | Cd | Co | Cr | Cu | Ni | Pb |
---|---|---|---|---|---|---|---|
Mean | 119.44 | 0.95 | 0.76 | 2.96 | 20.65 | 3.20 | 36.95 |
Standard Error | 17.54 | 0.10 | 0.10 | 0.37 | 1.56 | 0.30 | 3.97 |
Median | 90.51 | 0.94 | 0.69 | 2.49 | 18.10 | 3.07 | 30.86 |
Standard Deviation | 109.54 | 0.65 | 0.65 | 2.28 | 9.75 | 1.87 | 24.79 |
Sample Variance | 11,998.65 | 0.42 | 0.43 | 5.21 | 95.04 | 3.49 | 614.63 |
Kurtosis | 8.37 | −1.09 | −0.74 | 4.85 | 3.63 | 0.93 | 5.73 |
Skewness | 2.43 | 0.21 | 0.53 | 2.11 | 1.68 | 0.93 | 2.12 |
Range | 578.17 | 2.18 | 2.19 | 10.82 | 47.85 | 8.13 | 126.30 |
Minimum | 13.14 | 0.00 | 0.00 | 0.28 | 7.88 | 0.24 | 8.99 |
Maximum | 591.31 | 2.18 | 2.19 | 11.10 | 55.73 | 8.37 | 135.29 |
Sum | 4658.01 | 37.12 | 29.73 | 115.30 | 805.17 | 124.90 | 1440.99 |
Coefficient of variation (CV) (%) | 91.71 | 68.06 | 85.77 | 77.22 | 47.22 | 58.32 | 67.10 |
Count | 39 | 39 | 39 | 39 | 39 | 39 | 39 |
Confidence Level (95.0%) | 35.51 | 0.21 | 0.21 | 0.74 | 3.16 | 0.61 | 8.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, A.; Gupta, B.S.; Patidar, S.; Martínez-Villegas, N. Estimating Source Apportionment of Heavy Metals Contamination in Surface Soil Based on a Positive Matrix Factorization (PMF) Model around Cerrito Blanco in San Luis Potosi, Mexico. Proceedings 2023, 87, 19. https://doi.org/10.3390/IECG2022-13746
Saha A, Gupta BS, Patidar S, Martínez-Villegas N. Estimating Source Apportionment of Heavy Metals Contamination in Surface Soil Based on a Positive Matrix Factorization (PMF) Model around Cerrito Blanco in San Luis Potosi, Mexico. Proceedings. 2023; 87(1):19. https://doi.org/10.3390/IECG2022-13746
Chicago/Turabian StyleSaha, Arnab, Bhaskar Sen Gupta, Sandhya Patidar, and Nadia Martínez-Villegas. 2023. "Estimating Source Apportionment of Heavy Metals Contamination in Surface Soil Based on a Positive Matrix Factorization (PMF) Model around Cerrito Blanco in San Luis Potosi, Mexico" Proceedings 87, no. 1: 19. https://doi.org/10.3390/IECG2022-13746