Prediction of the Factors Affecting the Permanence of Knowledge in Mathematics Using Soft Computing †
Abstract
:1. Objectives
2. Methodology
3. Results
4. Originality Value
5. Contribution
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinn, S.J.; Ashcroft, J.R. Mathematics for Dyslexics: A Teaching Handbook; Whurr Publishing: London, UK, 1998. [Google Scholar]
- Chiou, C. The effect of concept mapping on students’ learning achievements and interests. Innov. Educ. Teach. Int. 2008, 45, 375–387. [Google Scholar] [CrossRef]
- Denić, N.; Gavrilović, S.; Nataša Kontrec, N. Information and communications technologies in the function of the teaching process. Univ. Thought 2017, 7, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Nehat, D.; Keith Prenton, K.; Reka-Zogaj, F.; Shabani, A.; Thaqi, A.; Xhaferi, J. Razvoj Veština 21. veka u predmetu MATEMATIKE. Available online: http://kec-ks.org/wp-content/uploads/2016/06/BEP-Math_srb.pdf (accessed on 21 July 2022).
- Frederickson, N.; Cline, T. Special Educational Needs, Inclusion and Diversity: A Textbook, 2nd ed.; Open University Press: Buckingham, UK, 2009. [Google Scholar]
- Gavrilović, S.; Denić, N.; Petković, D.; Živić, N.V.; Vujičić, S. Statistical evaluation of mathematics lecture performances by soft computing approach. Comput. Appl. Eng. Educ. 2018, 26, 902–905. [Google Scholar] [CrossRef]
- Kurnik, Z. Znanstveni Okviri Nastave Matematike; Element: Zagreb, Croatia, 2009; ISBN 978-953-197-501-8. [Google Scholar]
- Lee, H.; Hollebrands, K. Preparing to Teach Mathematics With Technology: An Integrated Approach to Developing Technological Pedagogical Content Knowledge. Contemp. Issues Technol. Teach. Educ. 2008, 8, 326–341. [Google Scholar]
- OECD. Measuring Students Knowledge and Skills—A New Framework for Assessment; OCED: Paris, France, 1999. [Google Scholar]
- Petković, D.; Gocić, M.; Shamshirband, S. Adaptive neuro-fuzzy computing technique for precipitation estimation. FACTA UNIVERSITATISSer. Mech. Eng. 2016, 14, 209–218. [Google Scholar] [CrossRef]
- Sugeno, M.; Kang, G.T. Structure identification of fuzzy model. Fuzzy Sets Syst. 1988, 28, 15–33. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilović, S.; Stojanović, J.; Denić, N. Prediction of the Factors Affecting the Permanence of Knowledge in Mathematics Using Soft Computing. Proceedings 2023, 85, 34. https://doi.org/10.3390/proceedings2023085034
Gavrilović S, Stojanović J, Denić N. Prediction of the Factors Affecting the Permanence of Knowledge in Mathematics Using Soft Computing. Proceedings. 2023; 85(1):34. https://doi.org/10.3390/proceedings2023085034
Chicago/Turabian StyleGavrilović, Snežana, Jelena Stojanović, and Nebojša Denić. 2023. "Prediction of the Factors Affecting the Permanence of Knowledge in Mathematics Using Soft Computing" Proceedings 85, no. 1: 34. https://doi.org/10.3390/proceedings2023085034