Recovering Blurred Images to Recognize Field Information †
Abstract
:1. Introduction
2. Identifying Original Image by Solving Integral Blurring Equation with Theory of Hypernumber
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cazzato, D.; Cimarelli, C.; Sanchez-Lopez, J.L.; Voos, H.; Leo, M. A Survey of Computer Vision Methods for 2D Object Detection from Unmanned Aerial Vehicles. J. Imaging 2020, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Cerón, A.; Mondragón, I.; Prieto, F. Onboard visual-based navigation system for power line following with UAV. Int. J. Adv. Robot. Syst. 2018, 15. [Google Scholar] [CrossRef]
- Oleshko, T.; Kvashuk, D.; Heiets, I. Image recognition in unmanned aviation using modern programming languages. SN Appl. Sci. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Rubio, V.; Ferran, J.; Garcia, J.; Almodovar, N.; Mayordomo, J.; Alvarez, V. Automatic Change Detection System over Unmanned Aerial Vehicle Video Sequences Based on Convolutional Neural Networks. Sensors 2019, 19, 4484. [Google Scholar] [CrossRef] [PubMed]
- Matikainen, L.; Lehtomäki, M.; Ahokas, E.; Hyyppä, J.; Karjalainen, M.; Jaakkola, A.; Kukko, A.; Heinonen, T. Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 2016, 119, 10–31. [Google Scholar] [CrossRef]
- Zohair, A.; Dzulkifli, M.; MohdSharfy, M.R.; Ghazali, S. Restoring Degrade Astronomy Images using a Combination of Denoising and Deblurring Techniques. Int. J. Signal Process. Image Process. Pattern Recognit. 2012, 5, 1–11. [Google Scholar]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. UAV Image Blur—Its Influence and Ways to Correct it. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4. In Proceedings of the 2015 International Conference on Unmanned Aerial Vehicles in Geomatics, Toronto, TN, Canada, 30 August–2 September 2015; Available online: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W4/33/2015/isprsarchives-XL-1-W4-33-2015.pdf (accessed on 19 October 2015).
- Tai, Y.; Tan, P.; Brown, M.S. Richardson-Lucy Deblurring for Scenes under a Projective Motion Path. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Morigi, S.; Reichel, I.; Sgallari, F. Iterative Methods of Richardson-Lucy type for Image Deblurring. Numer. Math. Theor. Meth. Appl. 2013, 6, 262–275. [Google Scholar] [CrossRef]
- Hummel, R.; Kimia, B.; Zusker, S. Deblurring Gausian Blur. Robotics Report No. 23; New York University: New York, NY, USA, 1986. [Google Scholar]
- A Basran, N.; Eng, J.H.; Saudi, A.; Sulaiman, J. Numerical Solution of Non-Linear Diffusion Equation in Image Blurring Using Two-Point EGSOR Iterative Method. J. Physics: Conf. Ser. 2019, 1358, 012050. [Google Scholar] [CrossRef]
- Burgin, M. Nonlinear Partial Differential Equations in Extrafunctions. Integr. Math. Theory Appl. 2010, 2, 17–50. [Google Scholar]
- Burgin, M.; Dantsker, A.M. A method of solving operator equations by means of the theory of hypernumbers. Not. Nat. Acad. Sci. Ukr. 1995, 8, 27–30. (In Russian) [Google Scholar]
- Burgin, M.; Dantsker, A.M. Real-Time Inverse Modeling of Control Systems Using Hypernumbers; Functional Analysis and Probability, Nova Science Publishers: New York, NY, USA, 2015; pp. 439–456. [Google Scholar]
- Hirsch, M.; Schuler, C.J.; Harmeling, S.; Scholkopf, B. Fast removal of non-uniform camera shake. In Proceedings of the 2011 International Conference on Computer Vision, Washington, DC, USA, 6–13 November 2011. [Google Scholar]
- Hossain, F.A.; Zhang, Y.M.; Tonima, M.A. Forest fire flame and smoke detection from UAV-captured images using fire-specific color features and multi-color space local binary pattern. J. Unmanned Veh. Syst. 2020, 8, 285–309. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dantsker, A. Recovering Blurred Images to Recognize Field Information. Proceedings 2022, 81, 50. https://doi.org/10.3390/proceedings2022081050
Dantsker A. Recovering Blurred Images to Recognize Field Information. Proceedings. 2022; 81(1):50. https://doi.org/10.3390/proceedings2022081050
Chicago/Turabian StyleDantsker, Arkadiy. 2022. "Recovering Blurred Images to Recognize Field Information" Proceedings 81, no. 1: 50. https://doi.org/10.3390/proceedings2022081050
APA StyleDantsker, A. (2022). Recovering Blurred Images to Recognize Field Information. Proceedings, 81(1), 50. https://doi.org/10.3390/proceedings2022081050