Therapeutic Bio-Compounds from Avocado Residual Biomass †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Bioactive Properties
3.2. Phytochemicals
4. Conclusions
Acknowledgments
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez, M.L.; Villanueva, M. The avocado in the prehispanic time avocados in the prehispanic time. In Proceedings of the VI World Avocado Congress, Viña Del Mar, Chile, 12–16 November 2007. [Google Scholar]
- Dabas, D.; Elias, R.J.; Lambert, J.D.; Ziegler, G.R. A Colored Avocado Seed Extract as a Potential Natural Colorant. J. Food Sci. 2011, 76, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Dabas, D.; Ziegler, G.R.; Lambert, J.D. Anti-Inflammatory Properties of a Colored Avocado Seed Extract. Adv. Food Technol. Nutr. Sci. Open J. 2019, 5, 8–12. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The odyssey of bioactive compounds in Avocado (Persea Americana) and their health benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Dabas, D.; Elias, R.J.; Ziegler, G.R.; Lambert, J.D. In vitro antioxidant and cancer inhibitory activity of a colored avocado seed extract. Int. J. Food Sci. 2019, 2019, 6509421. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Nagafuji, S.; Okawa, M.; Kinjo, J.; Akahane, H.; Ogura, T.; Martinez-Alfaro, M.A.; Reyes-Chilpa, R. Trypanocidal constituents in plants 5. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in the seeds of Persea americana. Biol. Pharm. Bull. 2005, 28, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Porras, A.R.; Salazar-Ospina, A.; Jimenez-Del-Rio, M.; Pereañez-Jimenez, A.; Velez-Pardo, C. Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells. Pharm. Biol. 2014, 52, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, M.; Dhana Rangesh Kumar, V.; Nithya, T.G.; Danya, U. Assessment of antioxidant, antibacterial activity and phytoactive compounds of aqueous extracts of avocado fruit peel from Ethiopia. Int. J. Pept. Res. Ther. 2020, 26, 1549–1557. [Google Scholar] [CrossRef]
- Deuschle, V.C.K.N.; Brusco, I.; Piana, M.; Faccin, H.; de Carvalho, L.M.; Oliveira, S.M.; Viana, C. Persea americana Mill. crude extract exhibits antinociceptive effect on UVB radiation-induced skin injury in mice. Inflammopharmacology 2019, 27, 323–338. [Google Scholar] [CrossRef]
- Castro-López, C.; Bautista-Hernández, I.; González-Hernández, M.D.; Martínez-Ávila, G.C.G.; Rojas, R.; Gutiérrez-Díez, A.; Medina-Herrera, N.; Aguirre-Arzola, V.E. Polyphenolic profile and antioxidant activity of leaf purified hydroalcoholic extracts from seven mexican Persea americana cultivars. Molecules 2019, 24, 173. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Lópeza, N.J.; Domínguez-Avila, A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT Food Sci. Technol. 2016, 65, 46–52. [Google Scholar] [CrossRef]
- Daiuto, É.R.; Tremocoldi, M.A.; Matias De Alencar, S.; Vieites, R.L.; Minarelli, P.H. Chemical composition and antioxidant activity of the pulp, peel and by products of avocado ‘hass. Rev. Bras. Frutic. 2014, 36, 417–424. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Petrón, M.J.; Estévez, M. Inhibition of cholesterol oxidation products (COPs) formation in emulsified porcine patties by phenolic-rich avocado (Persea americana Mill.) extracts. J. Agric. Food Chem. 2012, 60, 2224–2230. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- Segovia, F.J.; Hidalgo, G.I.; Villasante, J.; Ramis, X.; Almajano, M.P. Avocado seed: A comparative study of antioxidant content and capacity in protecting oil models from oxidation. Molecules 2018, 23, 2421. [Google Scholar] [CrossRef] [PubMed]
- Permal, R.; Leong Chang, W.; Seale, B.; Hamid, N.; Kam, R. Converting industrial organic waste from the cold-pressed avocado oil production line into a potential food preservative. Food Chem. 2020, 306, 125635. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. omprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage. Meat Sci. 2011, 89, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Govea-Salas, M.; Pintado, M.E.; Aguilar, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crops Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Hatzakis, E.; Mazzola, E.P.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chem. 2019, 293, 15–22. [Google Scholar] [CrossRef] [PubMed]
Avocado Part | Pharmacological Action | Bio-Compound | Study Type a | Ref. |
---|---|---|---|---|
Stone | Antioxidant and cancer inhibitory activity | Polyphenols | IVT | [5] |
Stone | Moderate activity against epimastigotes and trypomastigotes | trihydroxyheptadecane and trihydroxy-nonadecane derivatives | IVT | [6] |
Stone and leaf | Pro-apoptotic effect on Jurkat lymphoblastic leukemia cells that are eliminated through an oxidative stress mechanism | NR | IVT | [7] |
Peel | Antibacterial activity against a wide range of infectious agents Anti-oxidative properties Antimicrobial properties, including fungi, yeasts, bacteria, and viruses | Phenolic compounds Alkaloids | IVT | [8] |
Leaf | Antinociceptive effect on UVB radiation-induced skin injury in mice. Treatment of the pain associated with sunburn | Phenolic compounds such as (+)-catechin, chlorogenic acid and rutin | IVV | [9] |
Leaf | Antioxidant activity | Phenolic compounds, including phenolic acids and flavonoids | IVT | [10] |
Stone | Anti-inflammatory activity | Perseorangin | IVT | [11] |
Part | Extraction Method | Solvent | TPC (g GAE/kg) | TFC (g RE/kg) | ABTS (g TE/kg) | FRAP (g TE/kg) | Ref. |
---|---|---|---|---|---|---|---|
Peel | Soxhlet extraction | Water | 266 | 342 | 281 | 245 | This study |
Boiling | Water | 20 | 11 | ND | 23 | [12] | |
Ultrasound-assisted extraction | 80% Ethanol | 64 | ND | 198 | ND | [13] | |
Homogenization | 70% Acetone | 90 | ND | ND | ND | [14] | |
Homogenization | 70% Acetone | 51 | ND | ND | ND | [15] | |
Stirring in bath | 50% Ethanol | 31 | ND | 66 | 110 | [16] | |
Homogenization | 50% Methanol and 70% acetone | 137 | ND | ND | 137 | [17] | |
Heated and filtered | Water | 52 | 2 | ND | ND | [8] | |
Stone | Soxhlet extraction | Water | 18 | 27 | 25 | 19 | This study |
Boiling | Water | 6 | 3 | ND | 10 | [12] | |
Ultrasound-assisted extraction | 80% Ethanol | 57 | ND | 162 | ND | [13] | |
Acelerated solvent extraction | 50% Ethanol | ND | ND | 88 | ND | [18] | |
Homogenization | 70% Acetone | 61 | ND | ND | ND | [19] | |
Homogenization | 70% Acetone | 41 | ND | ND | ND | [15] | |
Homogenization | 50% methanol and 70% acetone | 81 | ND | 77 | [17] | ||
Microwave-assisted extraction | 70% Acetone | 307 | ND | 607 | ND | [20] | |
Microwave-assisted extraction | 58.5% Ethanol | 254 | ND | 516 | ND | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Vargas, M.C.; Contreras, M.d.M.; Castro, E. Therapeutic Bio-Compounds from Avocado Residual Biomass. Proceedings 2021, 79, 4. https://doi.org/10.3390/IECBM2020-08656
García-Vargas MC, Contreras MdM, Castro E. Therapeutic Bio-Compounds from Avocado Residual Biomass. Proceedings. 2021; 79(1):4. https://doi.org/10.3390/IECBM2020-08656
Chicago/Turabian StyleGarcía-Vargas, Minerva C., María del Mar Contreras, and Eulogio Castro. 2021. "Therapeutic Bio-Compounds from Avocado Residual Biomass" Proceedings 79, no. 1: 4. https://doi.org/10.3390/IECBM2020-08656
APA StyleGarcía-Vargas, M. C., Contreras, M. d. M., & Castro, E. (2021). Therapeutic Bio-Compounds from Avocado Residual Biomass. Proceedings, 79(1), 4. https://doi.org/10.3390/IECBM2020-08656