Chromosome-Level Genome Assemblies: Expanded Capabilities for Conservation Biology Research †
Abstract
:1. Introduction
2. Methods
2.1. Quality Control and Filtration of the Data
2.2. Alignment and Variant Calling
2.3. Heterozygosity Visualization
3. Results and Discussion
3.1. Evaluation of Genome Assemblies
3.2. Heterozygosity Estimations and Visualization
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Dudchenko, O.; Shamim, M.S.; Batra, S.S.; Durand, N.C.; Musial, N.T.; Mostofa, R.; Pham, M.; Glenn St Hilaire, B.; Yao, W.; Stamenova, E.; et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv 2018. [Google Scholar] [CrossRef]
- Dobrynin, P.; Liu, S.; Tamazian, G.; Xiong, Z.; Yurchenko, A.A.; Krasheninnikova, K.; Kliver, S.; Schmidt-Küntzel, A.; Koepfli, K.-P.; Johnson, W.; et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 2015, 16, 277. [Google Scholar] [CrossRef]
- Dobson, L.K. Sequencing the Genome of the North American Bison. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
- Hu, Y.; Wu, Q.; Ma, S.; Ma, T.; Shan, L.; Wang, X.; Nie, Y.; Ning, Z.; Yan, L.; Xiu, Y.; et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc. Natl. Acad. Sci. USA 2017, 114, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.J.; Haulena, M.; Taylor, G.A.; Chan, S.; Bilobram, S.; Warren, R.L.; Hammond, S.A.; Mungall, K.L.; Choo, C.; Kirk, H.; et al. The Genome of the Northern Sea Otter (Enhydra lutris kenyoni). Genes 2017, 8, 379. [Google Scholar] [CrossRef] [PubMed]
- de Manuel, M.; Barnett, R.; Sandoval-Velasco, M.; Yamaguchi, N.; Garrett Vieira, F.; Zepeda Mendoza, M.L.; Liu, S.; Martin, M.D.; Sinding, M.-H.S.; Mak, S.S.T.; et al. The evolutionary history of extinct and living lions. Proc. Natl. Acad. Sci. USA 2020, 117, 10927–10934. [Google Scholar] [CrossRef] [PubMed]
- Beichman, A.C.; Koepfli, K.-P.; Li, G.; Murphy, W.; Dobrynin, P.; Kliver, S.; Tinker, M.T.; Murray, M.J.; Johnson, J.; Lindblad-Toh, K.; et al. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Mol. Biol. Evol. 2019, msz101. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.L.; Decker, J.E.; Schnabel, R.D.; Taylor, J.F. Candidate lethal haplotypes and causal mutations in Angus cattle. BMC Genom. 2017, 18, 799. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Kliver, S. KrATER: K-mer Analysis Tool Easy to Run. 2017. Available online: https://github.com/mahajrod/KrATER (accessed on 10 September 2020).
- Starostina, E.; Tamazian, G.; Dobrynin, P.; O’Brien, S.; Komissarov, A. Cookiecutter: A tool for kmer-based read filtering and extraction. Bioinformatics 2015. [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinforma. Oxf. Engl. 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Latin Name | IUCN Red List Category 1 | Common Name | Assembly Source or ID | Assembly Type 2 | Length, Gbp | Ns, Mbp | N50, Mbp |
---|---|---|---|---|---|---|---|
Enhydra lutris | EN | Sea otter | DNA Zoo | Chr | 2.45 | 28.94 | 145.94 |
GCA_002288905.2 | Draft | 2.46 | 29.68 | 38.75 | |||
Acinonyx jubatus | VU | Cheetah | DNA Zoo | Chr | 2.37 | 42.86 | 144.64 |
GCA_001443585.1 | Draft | 2.37 | 42.06 | 3.12 | |||
Neofelis nebulosa | VU | Clouded leopard | DNA Zoo | Chr | 2.42 | 7.94 | 147.11 |
DNAzoo draft | Draft | 2.41 | 5.89 | 1.38 | |||
Pteronura brasiliensis | EN | Giant otter | DNA Zoo | Chr | 2.46 | 11.89 | 133.38 |
DNAzoo draft | Draft | 2.45 | 1.40 | 0.17 | |||
Ailurus fulgens | EN | Red panda | DNA Zoo | Chr | 2.34 | 34.41 | 143.80 |
GCA_002007465.1 | Draft | 2.34 | 34.04 | 2.98 | |||
Aonyx cinereus | VU | Asian small-clawed otter | DNA Zoo | Chr | 2.44 | 15.50 | 130.94 |
DNAzoo draft | Draft | 2.42 | 1.35 | 0.10 | |||
Bison bison | NT | American bison | DNA Zoo | Chr | 2.83 | 199.31 | 101.69 |
GCF_000754665.1 | Draft | 2.83 | 195.77 | 7.19 |
Species | Number of SNPs | Number of 100 kbp Windows | Number of 1 Mbp Windows | |||
---|---|---|---|---|---|---|
Draft | Chr | Draft | Chr | Draft | Chr | |
Enhydra lutris | 648,954 | 648,017 | 24,146 | 24,165 | 2337 | 2396 |
Acinonyx jubatus | 1,147,794 | 1,147,409 | 22,861 | 23,609 | 1757 | 2350 |
Neofelis nebulosa | 1,449,490 | 1,449,365 | 22,004 | 23,931 | 1194 | 2387 |
Pteronura brasiliensis | 2,362,725 | 2,362,126 | 13,589 | 22,819 | 32 | 2262 |
Ailurus fulgens | 2,779,501 | 2,779,133 | 22,083 | 23,139 | 1573 | 2298 |
Aonyx cinereus | 3,233,877 | 3,233,911 | 9777 | 22,183 | 3 | 2204 |
Bison bison | 6,515,175 | 6,515,068 | 24,286 | 26,213 | 2181 | 2604 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Totikov, A.; Tomarovsky, A.; Derezanin, L.; Dudchenko, O.; Lieberman-Aiden, E.; Koepfli, K.; Kliver, S. Chromosome-Level Genome Assemblies: Expanded Capabilities for Conservation Biology Research. Proceedings 2021, 76, 10. https://doi.org/10.3390/IECGE-07149
Totikov A, Tomarovsky A, Derezanin L, Dudchenko O, Lieberman-Aiden E, Koepfli K, Kliver S. Chromosome-Level Genome Assemblies: Expanded Capabilities for Conservation Biology Research. Proceedings. 2021; 76(1):10. https://doi.org/10.3390/IECGE-07149
Chicago/Turabian StyleTotikov, Azamat, Andrey Tomarovsky, Lorena Derezanin, Olga Dudchenko, Erez Lieberman-Aiden, Klaus Koepfli, and Sergei Kliver. 2021. "Chromosome-Level Genome Assemblies: Expanded Capabilities for Conservation Biology Research" Proceedings 76, no. 1: 10. https://doi.org/10.3390/IECGE-07149
APA StyleTotikov, A., Tomarovsky, A., Derezanin, L., Dudchenko, O., Lieberman-Aiden, E., Koepfli, K., & Kliver, S. (2021). Chromosome-Level Genome Assemblies: Expanded Capabilities for Conservation Biology Research. Proceedings, 76(1), 10. https://doi.org/10.3390/IECGE-07149