Bioactive Compounds, Antioxidant Activity and Growth Behavior in Lettuce Cultivars Grown under Field and Greenhouse Conditions †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Biometric Measurements
2.3. Bioactive Compounds and Antioxidant Activity
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mampholo, B.M.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Phytochemicals and Overall Quality of Leafy Lettuce (Lactuca sativa L.) Varieties Grown in Closed Hydroponic System. J. Food Qual. 2016, 39, 805–815. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Mou, B. Nutritional Quality of Lettuce. Curr. Nutr. Food Sci. 2012, 8, 177–187. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed]
- Gil, M. Pre- and postharvest strategies to enhance bioactive constituents of fruits and vegetables. Acta Hortic. 2015, 1079, 95–106. [Google Scholar] [CrossRef]
- Koukounaras, A.; Siomos, A.S.; Gerasopoulos, D.; Karamanoli, K. Genotype, ultraviolet irradiation, and harvesting time interaction effects on secondary metabolites of whole lettuce and browning of fresh-cut product. J. Hortic. Sci. Biotechnol. 2016, 91, 491–496. [Google Scholar] [CrossRef]
- Galieni, A.; Di Mattia, C.; De Gregorio, M.; Speca, S.; Mastrocola, D.; Pisante, M.; Stagnari, F. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci. Hortic. 2015, 187, 93–101. [Google Scholar] [CrossRef]
- Charles, F.; Nilprapruck, P.; Roux, D.; Sallanon, H. Visible light as a new tool to maintain fresh-cut lettuce post-harvest quality. Postharvest Biol. Technol. 2018, 135, 51–56. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Extraction of photosynthetic tissues: Chlorophylls and carotenoids. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley and Sons Inc.: New York, NY, USA, 2001; pp. F4.3.1–F4.3.8. [Google Scholar]
- Soto, V.; González, R.; Sance, M.; Galmarini, C. Organosulfur and phenolic content of garlic (Allium sativum L.) and onion (Allium cepa L.) and its relationship with antioxidant activity. In VII International Symposium on Edible Alliaceae; ISHS Acta Horticulturae 1143; Gokce, A.F., Ed.; Acta Horticulturae: Leuven, Belgium, 2016; pp. 277–290. [Google Scholar] [CrossRef]
- Marin, A.; Ferreres, F.; Barberá, G.G.; Gil, M.I. Weather Variability Influences Color and Phenolic Content of Pigmented Baby Leaf Lettuces throughout the Season. J. Agric. Food Chem. 2015, 63, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Ilić, S.; Milenković, L.; Dimitrijević, A.; Stanojević, L.; Cvetković, D.; Kevrešan, Ž.; Fallik, E.; Mastilović, J. Light modification by color nets improve quality of lettuce from summer production. Sci. Hortic. 2017, 226, 389–397. [Google Scholar] [CrossRef]
- Fontana, L.; Rossi, C.A.; Hubinger, S.Z.; Ferreira, M.D.; Spoto, M.; Sala, F.C.; Verruma-Bernardi, M.R. Physicochemical characterization and sensory evaluation of lettuce cultivated in three growing systems. Hortic. Bras. 2018, 36, 20–26. [Google Scholar] [CrossRef]
- Rodrigo-García, J.; Navarrete-Laborde, B.A.; De La Rosa, L.A.; Álvarez-Parrilla, E.; Núñez-Gastélum, J.A. Effect of Harpin protein as an elicitor on the content of phenolic compounds and antioxidant capacity in two hydroponically grown lettuce (Lactuca sativa L.) varieties. Food Sci. Technol. 2019, 39, 72–77. [Google Scholar] [CrossRef]
- Salomão-Oliveira, A.; Lima, E.S.; Marinho, H.A.; Carvalho, R.P. Benefits and Effectiveness of Using Paullinia cupana: A Review Article. J. Food Nutr. Res. 2018, 6, 497–503. [Google Scholar] [CrossRef]
Type | Genotypes |
---|---|
Iceberg | 83-25-317; Dessert storm; BL001; BL003; Road runner; Valley Green |
Crisped head | Bacchus; Falbala; BL009; BL010; BL011; Lírice |
Batavia | Rossia |
Oak leaf | Grenadine |
Latin | Crimor; Maravimor |
Butterhead | Balerina; BL006; Lores |
Romaine | BL012; BL013; BL014 |
Type Cultivar | FIELD PRODUCTION | ||
---|---|---|---|
Stem Diameter (cm) | Height Plant (cm) | Fresh Weight Plant (g) | |
Iceberg | 1.67 ± 0.94 1 a 2 | 32.67 ± 1.81 cd | 465.45 ± 48.20 f |
Crisped head | 1.89 ± 0.68 ab | 26.87 ± 4.65 ab | 299.81 ± 89.57 cde |
Batavia | 3.27 ± 1.10 b | 27.67 ± 1.53 abc | 436.57 ± 78.95 ef |
Oak leaf | 2.57 ± 0.25 ab | 30.00 ± 1.00 abcd | 251.40 ± 15.81 abcde |
Latin | 2.28 ± 0.45 ab | 31.83 ± 5.42 bcd | 362.83 ± 42.36 def |
Butterhead | 1.61 ± 0.18 a | 28.38 ± 5.74 abc | 326.22 ± 94.90 de |
Romaine | 2.46 ± 0.24 ab | 27.39 ± 3.53 ab | 479.03 ± 58.93 f |
GREENHOUSE PRODUCTION | |||
Stem Diameter (cm2) | Height Plant (cm) | Fresh Weight Plant (g) | |
Iceberg | 1.85 ± 0.99 ab | 29.22 ± 2.67 bc | 209.48 ± 75.97 bc |
Crisped head | 1.87 ± 0.59 ab | 34.31± 20.71 ab | 96.11 ± 39.53 a |
Batavia | 1.50 ± 0.30 ab | 22.62 ± 2.09 abcd | 16.,09 ± 61.19 abcd |
Oak leaf | 2.60 ± 0.10 ab | 22.62 ± 3.07 ab | 39.35 ± 6.11 ab |
Latin | 2.58 ± 0.94 ab | 31.07 ± 1.79 abcd | 140.21 ± 4.90 ab |
Butterhead | 1.43 ± 0.67 a | 36.94 ± 4.40 d | 179.79 ± 58.89 ab |
Romaine | 2.82 ± 0.39 b | 22.53 ± 3.16 a | 111.68 ± 22.62 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpe, M.L.; Vargas, V.C.S.; Morón, A.; González, R.E. Bioactive Compounds, Antioxidant Activity and Growth Behavior in Lettuce Cultivars Grown under Field and Greenhouse Conditions. Proceedings 2021, 70, 52. https://doi.org/10.3390/foods_2020-07709
Volpe ML, Vargas VCS, Morón A, González RE. Bioactive Compounds, Antioxidant Activity and Growth Behavior in Lettuce Cultivars Grown under Field and Greenhouse Conditions. Proceedings. 2021; 70(1):52. https://doi.org/10.3390/foods_2020-07709
Chicago/Turabian StyleVolpe, Melisa Lanza, Verónica C. Soto Vargas, Anabel Morón, and Roxana E. González. 2021. "Bioactive Compounds, Antioxidant Activity and Growth Behavior in Lettuce Cultivars Grown under Field and Greenhouse Conditions" Proceedings 70, no. 1: 52. https://doi.org/10.3390/foods_2020-07709
APA StyleVolpe, M. L., Vargas, V. C. S., Morón, A., & González, R. E. (2021). Bioactive Compounds, Antioxidant Activity and Growth Behavior in Lettuce Cultivars Grown under Field and Greenhouse Conditions. Proceedings, 70(1), 52. https://doi.org/10.3390/foods_2020-07709