Macroalgae as an Alternative Source of Nutrients and Compounds with Bioactive Potential †
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Nutritional Characterization of Macroalgae
2.3. Chemical Composition of Macroalgae
2.4. Bioactive Evaluation
2.4.1. Preparation of Extracts
2.4.2. Evaluation of Antioxidant Activity
2.4.3. Evaluation of Antimicrobial Activity
3. Results
3.1. Nutritional Characterization
3.2. Chemical Composition
3.3. Bioactive Potential
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Fernández-Segovia, I.; Lerma-García, M.J.; Fuentes, A.; Barat, J.M. Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Res. Int. 2018, 111, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Martínez–Hernández, G.B.; Castillejo, N.; Carrión–Monteagudo, M.d.M.; Artés, F.; Artés-Hernández, F. Nutritional and bioactive compounds of commercialized algae powders used as food supplements. Food Sci. Technol. Int. 2018, 24, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; et al. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J. 2019, 27, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Gnanavel, V.; Roopan, S.M.; Rajeshkumar, S. Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture 2019, 507, 1–6. [Google Scholar] [CrossRef]
- Praveen, M.A.; Parvathy, K.R.K.; Balasubramanian, P.; Jayabalan, R. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci. Technol. 2019, 92, 46–64. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W., Ed.; AOAC International: Rockville, MD, USA, 2016; ISBN 0935584870. [Google Scholar]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Garcia, J.A.A.; Corrêa, R.C.G.; Barros, L.; Pereira, C.; Abreu, R.M.V.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Chemical composition and biological activities of Juçara (Euterpe edulis Martius) fruit by-products, a promising underexploited source of high-added value compounds. J. Funct. Foods 2019, 55, 325–332. [Google Scholar] [CrossRef]
- Sokovicx́, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; Van Griensven, L.J.L.D. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Neto, R.T.; Marçal, C.; Queirós, A.S.; Abreu, H.; Silva, A.M.S.; Cardoso, S.M. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as functional ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. J. Appl. Phycol. 2016, 28, 3575–3585. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Marinho, G.S.; Holdt, S.L.; Jacobsen, C.; Angelidaki, I. Lipids and composition of fatty acids of Saccharina latissima cultivated year-round in integrated multi-trophic aquaculture. Mar. Drugs 2015, 13, 4357–4374. [Google Scholar] [CrossRef]
- Valentão, P.; Trindade, P.; Gomes, D.; Guedes de Pinho, P.; Mouga, T.; Andrade, P.B. Codium tomentosum and Plocamium cartilagineum: Chemistry and antioxidant potential. Food Chem. 2010, 119, 1359–1368. [Google Scholar] [CrossRef]
- Noda, H.; Amano, H.; Abo, K.; Horiguchi, Y. Sugar, Organic Acids, and Minerals of “Nori”, the Dried Laver Porphyra spp. Bull. Japanese Soc. Sci. Fish. 1981, 47, 57–62. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Plasticity and remodelling of lipids support acclimation potential in two species of low-intertidal macroalgae, Fucus serratus (Phaeophyceae) and Palmaria palmata (Rhodophyta). Algal Res. 2017, 26, 104–114. [Google Scholar] [CrossRef]
- Celikler, S.; Vatan, O.; Yildiz, G.; Bilaloglu, R. Evaluation of anti-oxidative, genotoxic and antigenotoxic potency of Codium tomentosum Stackhouse ethanolic extract in human lymphocytes in vitro. Food Chem. Toxicol. 2009, 47, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Osório, C.; Machado, S.; Peixoto, J.; Bessada, S.; Pimentel, F.B.; Alves, R.C.; Oliveira, M.B.P.P. Pigments content (Chlorophylls, fucoxanthin and phycobiliproteins) of different commercial dried algae. Separations 2020, 33. [Google Scholar] [CrossRef]
- Marinho, G.S.; Sørensen, A.-D.M.; Safadar, H.; Pedersen, A.H.; Holdt, S.L. Antioxidant content and activity of the seaweed Saccharina latissima: a seasonal perspective. J. Appl. Phycol. 2019, 31, 1343–1354. [Google Scholar] [CrossRef]
- Poosarla, A.; Raheem, A.; Gopal Sunkara, V.; T, R.P. Evaluation of Anti-Arthritic, Antimicrobial and Amylase activities of Codium tomentosum from Andaman and Nicobar islands. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 255–266. [Google Scholar]
- Cox, S.; Abu-Ghannam, N.; Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 2010, 17, 205–220. [Google Scholar] [CrossRef]
- El Wahidi, M.; El Amraoui, B.; El Amraoui, M.; Bamhaoud, T. Screening of antimicrobial activity of macroalgae extracts from the moroccan Atlantic coast. Ann. Pharm. Fr. 2015, 73, 190–196. [Google Scholar] [CrossRef]
C. tom | H. elo | L. och | S. lat | U. pin | Por | P. pal | |
---|---|---|---|---|---|---|---|
Ash (g/100 g DW) | 33.5 ± 0.8 | 29.1 ± 0.4 | 46.1 ± 1.3 | 16.1 ± 0.5 | 33.08 ± 1.07 | 7.8 ± 0.04 | 22.4 ± 0.6 |
Proteins (g/100 g DW) | 16.3 ± 0.5 | 11.8 ± 0.2 | 9.5 ± 0.2 | 6.7 ± 0.1 | 10.9 ± 0.3 | 30.2 ± 0.1 | 21.7 ± 0.7 |
Fat (g/100 g DW) | 3.12 ± 0.13 | 0.63 ± 0.02 | 0.55 ± 0.01 | 0.66 ± 0.01 | 0.59 ± 0.02 | 0.43 ± 0.01 | 0.29 ± 0.01 |
Carbohydrates (g/100 g DW) | 47.1 ± 0.3 | 58.4 ± 0.4 | 43.9 ± 0.8 | 76.6 ± 0.3 | 55.4 ± 0.5 | 61.6 ± 0.1 | 55.7 ± 0.9 |
Energy (kcal/100 g DW) | 281.6 ± 1.9 | 286.7 ± 1.0 | 218.5 ± 3.8 | 338.8 ± 1.4 | 270.6 ± 3.0 | 370.9 ± 0.1 | 311.9 ± 1.7 |
Energy (kJ/100 g DW) | 1739 ± 10 | 1906 ± 8 | 1445 ± 23 | 2350 ± 8 | 1802 ± 17 | 2284 ± 2 | 1971 ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Oliveira, P.; Carreira-Casais, A.; Caleja, C.; Pereira, E.; Calhelha, R.C.; Sokovic, M.; Simal-Gandara, J.; Ferreira, I.C.F.R.; Prieto, M.A.; Barros, L. Macroalgae as an Alternative Source of Nutrients and Compounds with Bioactive Potential. Proceedings 2021, 70, 46. https://doi.org/10.3390/foods_2020-07648
Garcia-Oliveira P, Carreira-Casais A, Caleja C, Pereira E, Calhelha RC, Sokovic M, Simal-Gandara J, Ferreira ICFR, Prieto MA, Barros L. Macroalgae as an Alternative Source of Nutrients and Compounds with Bioactive Potential. Proceedings. 2021; 70(1):46. https://doi.org/10.3390/foods_2020-07648
Chicago/Turabian StyleGarcia-Oliveira, Paula, Anxo Carreira-Casais, Cristina Caleja, Eliana Pereira, Ricardo C. Calhelha, Marina Sokovic, Jesus Simal-Gandara, Isabel C. F. R. Ferreira, Miguel Angel Prieto, and Lillian Barros. 2021. "Macroalgae as an Alternative Source of Nutrients and Compounds with Bioactive Potential" Proceedings 70, no. 1: 46. https://doi.org/10.3390/foods_2020-07648
APA StyleGarcia-Oliveira, P., Carreira-Casais, A., Caleja, C., Pereira, E., Calhelha, R. C., Sokovic, M., Simal-Gandara, J., Ferreira, I. C. F. R., Prieto, M. A., & Barros, L. (2021). Macroalgae as an Alternative Source of Nutrients and Compounds with Bioactive Potential. Proceedings, 70(1), 46. https://doi.org/10.3390/foods_2020-07648