Synthesis of Polymer Composites with Luminescent Properties †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Composites Preparation
3. Results
3.1. Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.2. Differential Scanning Calorimetry (DSC)
3.3. Hardness Measurements
4. Conclusions
References
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metaleorganic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef] [PubMed]
- Chowdhuri, A.R.; Laha, D.; Chandra, S.; Karmakar, P.; Sahu, S.K. Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells. Chem. Eng. J. 2017, 319, 200–211. [Google Scholar] [CrossRef]
- Konstantatos, A.; Sørensen, M.A.; Bendix, J.; Weihe, H. Lanthanide coordination complexes framed by sodium ions: Slow relaxation of the magnetization in the Dy(III) derivative. Dalton Trans. 2017, 46, 6024–6030. [Google Scholar] [CrossRef]
- Shen, N.N.; Cai, M.L.; Song, Y.; Wang, Z.P.; Huang, F.Q.; Li, J.R.; Huang, X.Y. Supramolecular Organization of [TeCl6]2– with Ionic Liquid Cations: Studies on the Electrical Conductivity and Luminescent Properties. Inorg. Chem. 2018, 57, 528–5291. [Google Scholar] [CrossRef]
- Parmar, B.; Patel, P.; Murali, V.; Rachuri, Y.; Kureshy, R.; Khan, N.; Suresh, E. Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic Routes, Characterization, Crystal Structure and Luminescence Studies. Inorg. Chem. Front. 2018, 5, 2630–2640. [Google Scholar] [CrossRef]
- Aulsebrook, M.L.; Biswas, S.; Leaver, F.M.; Grace, M.R.; Graham, B.; Barrios, A.M.; Tuck, K.L. A luminogenic lanthanide-based probe for the highly selective detection of nanomolar sulfide levels in aqueous samples. Chem. Commun. 2017, 53, 4911–4914. [Google Scholar] [CrossRef]
- Zhu, X.J.; Su, Q.Q.; Feng, W.; Li, F.Y. Anti-Stokes shift luminescent materials for bioapplications. Chem. Soc. Rev. 2017, 46, 1025–1039. [Google Scholar] [CrossRef]
- Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wenxuan, W.; Jia, Q.; Meng, Y.; Wang, K.P.; Hu, Z.Q. Dimethylamino naphthalene-based cyanostyrene derivatives with stimuli responsive luminescent properties. Dyes Pigm. 2019, 171, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Bomba, H.N.; Zhu, Y.; Gu, Z. Mechanical force—Triggered drug delivery. Chem. Rev. 2016, 116, 12536–12563. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, L.; Yan, Y.; Shi, H.; Wang, B.; Liang, Z.; Li, J. A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. J. Mater. Chem. C 2017, 5, 8999–9004. [Google Scholar] [CrossRef]
- Medishetty, R.; Zaręba, J.K.; Mayer, D.; Samoc, M.; Fischer, R.A. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem. Soc. Rev. 2017, 46, 4976–5004. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Feng, D.D.; Zhao, Y.D.; Fang, D.D.; Tang, J.; Fang, L.M.; Yang, J. A multifunctional 1D Cd- based metal-organic complex for the highly luminescent sensitive detection of Fe3+, CrO42−/Cr2O72−, and nitroaromatic explosives. J. Solid State Chem. 2019, 274, 40–46. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Bobbitt, N.S.; Mendonca, M.L.; Howarth, A.J.; Islamoglu, T.; Hupp, J.T.; Farha, O.K.; Snurr, R.Q. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 2017, 46, 3357–3385. [Google Scholar] [CrossRef]
- Qiao, X.; Chen, X.; Huang, C.; Li, A.; Li, X.; Lu, Z.; Wang, T. Detection of exhaled volatile organic compounds improved by hollow nanocages of layered double hydroxide on Ag nanowires. Angew. Chem. Int. Ed. 2019, 131, 16675–16679. [Google Scholar] [CrossRef]
- Pacheco-Liñán, P.J.; Fernández-Sainz, J.; Bravo, I.; Garzón-Ruiz, A.; Alonso-Moreno, C.; Carrillo-Hermosilla, F.; Antiñolo, A.; Albaladejo, J. Guanidine substitutions in naphthyl systems to allow a controlled excited-state intermolecular proton transfer: Tuning photophysical properties in aqueous solution. J. Phys. Chem. C 2018, 122, 9363–9373. [Google Scholar] [CrossRef]
- Wang, M.S.; Yang, C.; Wang, G.E.; Xu, G.; Lv, X.Y.; Xu, Z.N.; Lin, R.G.; Cai, L.Z.; Guo, G.C. A room- temperature X-ray-induced photochromic material for X-ray detection. Angew. Chem. Int. Ed. 2012, 51, 3432–3435. [Google Scholar] [CrossRef]
- Pan, M.; Lin, X.M.; Li, G.B.; Su, C.Y. Progress in the study of metaleorganic materials applying naphthalene diimide (NDI) ligands. Coord. Chem. Rev. 2011, 255, 1921–1936. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Sun, Z.L.; Liu, J.; Liu, J.J. Switchable luminescent properties in two photochromic naphthalene diimide coordination networks. J. Solid State Chem. 2019, 277, 216–220. [Google Scholar] [CrossRef]
- Podkościelna, B.; Lipke, A.; Gawdzik, B.; Majdan, M. Synthesis, characterization and luminescent properties of new copolymers of dimethacrylate derivatives of naphthalene-2,7-diol. Polym. Adv. Technol. 2015, 26, 176–181. [Google Scholar] [CrossRef]
- Ahn, T. Systematic approaches for blue light-emitting polymers by introducing various naphthalene linkages into carbazole containing PPV derivatives. Trans. Electr. Electron. Mater. 2013, 14, 258–262. [Google Scholar] [CrossRef]
- Mori, T.; Kijima, M. Synthesis and electroluminescence properties of carbazole-containing 2,6- naphthalene-based conjugated polymers. Eur. Polym. J. 2009, 45, 1149–1157. [Google Scholar] [CrossRef]
- Podkościelna, B.; Gawdzik, B. Influence of diluents compositions on the porous structure of methacrylate derivatives of aromatic diols and divinylbenzene. Appl. Surf. Sci. 2010, 256, 2462–2467. [Google Scholar] [CrossRef]
- Gargol, M.; Podkościelna, B. The use of waste materials as fillers on polimer composites—Synthesis and thermal properties. Physicochem. Probl. Miner. Process. 2019, 55, 1551–1557. [Google Scholar]
Type of Sample | Amount of Bis.GDA (g) | Amount of Active Solvent | Amount of Irgaqure®651 | Amount of 2,7-NAF.DM-NVP |
---|---|---|---|---|
0% wt. 2,7-NAF.DM-NVP | 10 g | 4.28 g | 0.14 g | 0 g |
0.5% wt. 2,7-NAF.DM-NVP | 10 g | 4.28 g | 0.14 g | 0.07 g |
1% wt. 2,7-NAF.DM-NVP | 10 g | 4.28 g | 0.14 g | 0.14 g |
2% wt. 2,7-NAF.DM-NVP | 10 g | 4.28 g | 0.14 g | 0.29 g |
5% wt. 2,7-NAF.DM-NVP | 10 g | 4.28 g | 0.14 g | 0.76 g |
10% wt. 2,7-NAF.DM-NVP | 10 g | 4.28 g | 0.14 g | 1.60 g |
Type of Sample | T1 | Tmax |
---|---|---|
1a (Bis.GDA + MMA) | 60.4 | 393.5 |
6a (Bis.GDA + MMA + 10% 2,7-NAF.DM-NVP) | 62.2 | 395.0 |
1b (Bis.GDA + NVP) | 79.3 | 408.6 |
6b (Bis.GDA + NVP + 10% 2,7-NAF-NVP.DM-NVP) | 63.0 | 413.1 |
1c (Bis.GDA + HEMA) | 78.4 | 391.4 |
6c (Bis.GDA + HEMA + 10% 2,7-NAF.DM-NVP) | 81.2 | 391.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargol, M.; Podkościelna, B. Synthesis of Polymer Composites with Luminescent Properties. Proceedings 2020, 67, 24. https://doi.org/10.3390/ASEC2020-07515
Gargol M, Podkościelna B. Synthesis of Polymer Composites with Luminescent Properties. Proceedings. 2020; 67(1):24. https://doi.org/10.3390/ASEC2020-07515
Chicago/Turabian StyleGargol, Mateusz, and Beata Podkościelna. 2020. "Synthesis of Polymer Composites with Luminescent Properties" Proceedings 67, no. 1: 24. https://doi.org/10.3390/ASEC2020-07515
APA StyleGargol, M., & Podkościelna, B. (2020). Synthesis of Polymer Composites with Luminescent Properties. Proceedings, 67(1), 24. https://doi.org/10.3390/ASEC2020-07515