Virulence Reversion in Staphylococcus aureus †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Strain Collection
2.2. Assessment of Agr Activity on Sheep Blood Agar Plates
2.3. Reversibility Testing
2.4. DNA Sequencing
3. Results and Discussion
3.1. 39 Primary Patient Samples Were Characterised as Agr-Negative
3.2. 10% of Strains Reverted Haemolysis
4. Conclusions
Conflicts of Interest
References
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Tam, K.; Torres, V.J. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Muir, T.W. Regulation of virulence in Staphylococcus aureus: Molecular mechanisms and remaining puzzles. Cell Chem. Biol. 2016, 23, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Bronesky, D.; Wu, Z.; Marzi, S.; Walter, P.; Geissmann, T.; Moreau, K.; Vandenesch, F.; Caldelari, I.; Romby, P. Staphylococcus aureus RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annu. Rev. Microbiol. 2016, 70, 299–316. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G., Jr.; Sakoulas, G.; McIntyre, L.M.; Meka, V.G.; Arbeit, R.D.; Cabell, C.H.; Stryjewski, M.E.; Eliopoulos, G.M.; Barth Reller, L.; Ralph Corey, G.; et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis. 2004, 190, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Shopsin, B.; Drlica-Wagner, A.; Mathema, B.; Adhikari, R.P.; Kreiswirth, B.N.; Novick, R. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J. Infect. Dis. 2008, 198, 1171–1174. [Google Scholar] [CrossRef] [PubMed]
- Traber, K.E.; Lee, E.; Benson, S.; Corrigan, R.; Cantera, M.; Shopsin, B.; Novick, R.P. agr function in clinical Staphylococcus aureus isolates. Microbiology 2008, 154 Pt 8, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Van Der Woude, M.W.; Bäumler, A.J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 2004, 17, 581–611. [Google Scholar] [CrossRef] [PubMed]
- Gor, V.; Takemura, A.J.; Nishitani, M.; Higashide, M.; Romero, V.M.; Ohniwa, R.L.; Morikawa, K. Finding of Agr Phase Variants in Staphylococcus aureus. mBio 2019, 10, e00796-19. [Google Scholar] [CrossRef] [PubMed]
- Christie, R.; Atkins, N.E.; Munch-Petersen, E. A note on a lytic phenomenon shown by group B streptococci. Aust. J. Exp. Biol. Med. Sci. 1944, 22, 197–200. [Google Scholar] [CrossRef]
- Altman, D.R.; Sullivan, M.J.; Chacko, K.I.; Balasubramanian, D.; Pak, T.R.; Sause, W.E.; Kumar, K.; Sebra, R.; Deikus, G.; Attie, O.; et al. Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection. Infect. Immun. 2018, 86, e00331-18. [Google Scholar] [CrossRef] [PubMed]
Primer name | Sequence (5′→3′) |
---|---|
agr front | AGTTGGGATGGCTTAATAAC |
agr back | CAGCTATACAGTGCATTTGC |
3010 WPF1 | GAAGACATGCTCATGGTGC |
3010 WPF2 | GGAATTTCAACATTATCGTTATTTCTA |
3010/3011/3082/3114 WPR1 | CAGTTGCGAGGGCAATTTC |
3010/3011/3082/3114 WPR2 | TCACGTAGGCCAGGCAT |
3011/3082/3114 WPF1 | GAAGACATGCACATGGTGC |
3011/3082 WPF2 | GTAATTTCGACATTATCGTTATTTCTA |
3011 WPF3 | TGTATGTATCAGGCGTTTC |
3011 WPR3 | GTACTCTTTAGTCGATTGTGGG |
3082 WPF3 | |
3114 WPF2 | GGAATTTCGACATTATCGTTATTTCTA |
3114/3082 WPF3 | TGCGAAGACGATCCAA |
alpha pcr F | CACTCAGTAATTTATCAGTTGC |
alpha pcr R | CACCTCATATAGTGTCATGTTTAGTC |
alpha F1 | GATATGTCTCAACTGCAATATTCTA |
alpha F2 | GTTTAGCCTGGCCTTCAGC |
alpha F3 | GCAGCAGATAACTTCCTTGAT |
alpha R1 | TCTGAAGTTATCGGCTAAAGT |
alpha R2 | GATTGCCATATACCGGGTTCC |
alpha R3 | GCACCTTCTTCGCTATAAACTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
|
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gor, V.; Hoshi, M.; Takemura, A.J.; Higashide, M.; Romero, V.M.; Ohniwa, R.L.; Morikawa, K. Virulence Reversion in Staphylococcus aureus . Proceedings 2020, 66, 24. https://doi.org/10.3390/proceedings2020066024
Gor V, Hoshi M, Takemura AJ, Higashide M, Romero VM, Ohniwa RL, Morikawa K. Virulence Reversion in Staphylococcus aureus . Proceedings. 2020; 66(1):24. https://doi.org/10.3390/proceedings2020066024
Chicago/Turabian StyleGor, Vishal, Mitsuaki Hoshi, Aya J. Takemura, Masato Higashide, Veronica Medrano Romero, Ryosuke L. Ohniwa, and Kazuya Morikawa. 2020. "Virulence Reversion in Staphylococcus aureus " Proceedings 66, no. 1: 24. https://doi.org/10.3390/proceedings2020066024
APA StyleGor, V., Hoshi, M., Takemura, A. J., Higashide, M., Romero, V. M., Ohniwa, R. L., & Morikawa, K. (2020). Virulence Reversion in Staphylococcus aureus . Proceedings, 66(1), 24. https://doi.org/10.3390/proceedings2020066024