Machine Learning Models Applied to Predictive Maintenance in Automotive Engine Components †
Abstract
:1. Introduction
2. Experiments
2.1. Dataset
- Ambient pressure [Pa];
- Compressor temperature [K];
- Compressor pressure [Pa];
- Intercooler temperature [K];
- Intake manifold temperature [K].
2.2. Machine Learning Methods
2.2.1. Single-Layer Feed-Forward Neural Network
2.2.2. Random Vector Functional Link Networks
2.2.3. Support Vector Machines
2.2.4. Random Forest
2.2.5. Gaussian Processes
2.3. Metrics and Statistics
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
RF | Random Forest |
SVM | Support Vector Machines |
ANN | Artificial Neural Networks |
GP | Gaussian Processes |
WLTP | Worldwide Harmonized Light Vehicle Test Procedure |
EUDC | Extra-Urban Driving Cycle |
NEDC | New European Driving Cycle |
FTP-75 | United States Environmental Protection Agency Federal Test Procedure |
Pa | Pascal |
K | Kelvin |
SLFN | Single-Layer Feed-Forward Neural Network |
RVFL | Random Vector Functional Link Networks |
TP | True Positive |
TN | True Negative |
FP | False Positive |
FP | False Negative |
s | Seconds |
References
- Frank, P.M. Fault detection in industrial processes. IFAC Proc. Vol. 1998, 31, 891–896. [Google Scholar] [CrossRef]
- Bode, G.; Thul, S.; Baranski, M.; Müller, D. Real-world application of machine-learning-based fault detection trained with experimental data. Energy 2020, 198, 117323. [Google Scholar] [CrossRef]
- Abdelgayed, T.S.; Morsi, W.G.; Sidhu, T.S. Fault detection and classification based on co-training of semisupervised machine learning. IEEE Trans. Ind. Electron. 2018, 65, 1595–1605. [Google Scholar] [CrossRef]
- Ruan, D.; Xie, H.; Song, K.; Zhang, G. Adaptive speed control based on disturbance compensation for engine-dynamometer system. IFAC Pap. 2019, 52, 642–647. [Google Scholar] [CrossRef]
- Cavalcante, I.M.; Frazzon, E.M.; Forcellini, F.A.; Ivanov, D. A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. Int. J. Inf. Manag. 2019, 49, 86–97. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, C.C.; Xu, J.; Gong, X.; You, C. Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks. IEEE Trans. Veh. Technol. 2014, 63, 1567–1580. [Google Scholar] [CrossRef]
- Huttunen, J.M.J.; Kärkkäinen, L.; Lindholm, H. Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data. PLoS Comput. Biol. 2019, 15, e1007259. [Google Scholar] [CrossRef]
- Janet, J.P.; Chan, L.; Kulik, H.J. Accelerating chemical discovery with machine learning: Simulated evolution of spin crossover complexes with an artificial neural network. J. Phys. Chem. Lett. 2018, 9, 1064–1071. [Google Scholar] [CrossRef]
- Li, Q.; Rajagopalan, C.; Clifford, G.D. A machine learning approach to multi-level ECG signal quality classification. Comput. Methods Programs Biomed. 2014, 117, 435–447. [Google Scholar] [CrossRef]
- Ng, K.Y.; Frisk, E.; Krysander, M.; Eriksson, L. A realistic simulation testbed of a turbocharged spark-ignited engine system: A platform for the evaluation of fault diagnosis algorithms and strategies. IEEE Control Syst. Mag. 2020, 40, 56–83. [Google Scholar] [CrossRef]
- Nielsen, M.A. Neural Networks and Deep Learning, 1st ed.; Determination Press: Boston, MA, USA, 2015; pp. 1–5. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Boston, MA, USA, 2016; pp. 164–167. [Google Scholar]
- Pao, Y.H.; Takefuji, Y. Functional-link net computing: Theory, system architecture, and functionalities. IEEE Comput. 1992, 25, 76–79. [Google Scholar] [CrossRef]
- Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 1994, 6, 163–180. [Google Scholar] [CrossRef]
- Vukovi, N.; Petrovi, M.; Miljkovi, Z. A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression. Appl. Soft Comput. 2018, 70, 1083–1096. [Google Scholar] [CrossRef]
- Zhang, L.; Suganthan, P.N. A comprehensive evaluation of random vector functional link networks. Inf. Sci. 2016, 367–368, 1094–1105. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N.; Amaratunga, G. Random vector functional link network for short-term electricity load demand forecasting. Inf. Sci. 2016, 367–368, 1078–1093. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000; pp. 267–270. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J. Learning with Kernels, Support Vector Machines, Regularization, Optimization and Beyond, 1st ed.; MIT Press: Boston, MA, USA, 2002; pp. 11–15. [Google Scholar]
- Keerthi, S.S.; Lin, C.-J. Asymptotic behaviors of support vector machines with gaussian kernel. Neural Comput. 2003, 15, 1667–1689. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shih, Y.S. Families of splitting criteria for classification trees. Stat. Comput. 1999, 9, 309–315. [Google Scholar] [CrossRef]
- Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; CRC Press: Boca Raton, FL, USA, 1984; pp. 255–259. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Boston, MA, USA, 2006; pp. 37–41. [Google Scholar]
- Bijl, H.; Wingerden, J.-W.; Verhaegen, M. Applying gaussian processes to reinforcement learning for fixed-structure controller synthesis. IFAC Proc. Vol. 2014, 47, 10391–10396. [Google Scholar] [CrossRef]
- Neal, R.M. Bayesian Learning for Neural Networks; Springer: New York, NY, USA, 1996; pp. 118–119. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Majid, U. Research fundamentals: Study design, population, and sample size. Undergrad. Res. In Nat. Clin. Sci. Technol. (Urncst) J. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Lyandres, V.; Briskin, S. On an approach to moving-average filtering. Signal Process. 1993, 34, 163–178. [Google Scholar] [CrossRef]
- Silva, R.G.; Ribeiro, M.H.D.M.; Moreno, S.R.; Mariani, V.C.; Coelho, L.S. A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy 2020, 119174. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; Mariani, V.C.; Coelho, L.S. Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods. J. Biomed. Inform. 2020, 111, 103575. [Google Scholar] [CrossRef]
- Moreno, S.R.; Silva, R.G.; Mariani, V.C.; Coelho, L.S. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network. Energy Convers. Manag. 2020, 213, 112869. [Google Scholar] [CrossRef]
- Klein, C.E.; Bittencourt, M.; Coelho, L.S. Wavenet using artificial bee colony applied to modeling of truck engine powertrain components. Eng. Appl. Artif. Intell. 2015, 41, 41–55. [Google Scholar] [CrossRef]
Method | Minimum | Mean | Median | Maximum | Standard Deviation |
---|---|---|---|---|---|
SLFN | 0.67917 | 0.74440 | 0.74849 | 0.77105 | 0.01842 |
RVFL | 0.76067 | 0.77493 | 0.77503 | 0.78577 | 0.00535 |
SVM | 0.80612 | 0.80612 | 0.80612 | 0.80612 | 0.00000 1 |
RF | 0.88539 1 | 0.88749 1 | 0.88746 1 | 0.88976 1 | 0.00108 |
GP | 0.78371 | 0.79245 | 0.79293 | 0.80300 | 0.00433 |
Method | Window Size | Delay | Minimum | Mean | Median | Maximum | Standard Deviation |
---|---|---|---|---|---|---|---|
SLFN | 3164 | 110.74 | 0.85982 | 0.95563 | 0.97318 | 0.99030 | 0.03742 |
RVFL | 2935 | 102.725 | 0.95630 | 0.97431 | 0.97478 | 0.98554 | 0.00732 |
SVM | 2711 | 94.885 | 0.99041 | 0.99041 | 0.99041 | 0.99041 | 0.00000 1 |
RF | 827 1 | 28.945 1 | 0.98577 1 | 0.99084 1 | 0.99205 1 | 0.99238 | 0.00202 |
GP | 2166 | 75.81 | 0.98565 | 0.99084 1 | 0.99093 | 0.99262 1 | 0.00118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessaro, I.; Mariani, V.C.; Coelho, L.d.S. Machine Learning Models Applied to Predictive Maintenance in Automotive Engine Components. Proceedings 2020, 64, 26. https://doi.org/10.3390/IeCAT2020-08508
Tessaro I, Mariani VC, Coelho LdS. Machine Learning Models Applied to Predictive Maintenance in Automotive Engine Components. Proceedings. 2020; 64(1):26. https://doi.org/10.3390/IeCAT2020-08508
Chicago/Turabian StyleTessaro, Iron, Viviana Cocco Mariani, and Leandro dos Santos Coelho. 2020. "Machine Learning Models Applied to Predictive Maintenance in Automotive Engine Components" Proceedings 64, no. 1: 26. https://doi.org/10.3390/IeCAT2020-08508
APA StyleTessaro, I., Mariani, V. C., & Coelho, L. d. S. (2020). Machine Learning Models Applied to Predictive Maintenance in Automotive Engine Components. Proceedings, 64(1), 26. https://doi.org/10.3390/IeCAT2020-08508