Experimental Study on Hollow Blocks with Wastes †
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Samples
3. Testing Result and Discussion
3.1. Mechanical Strength of Concrete Mixes
3.1.1. Compressive Strength
3.1.2. Flexural Strength
3.1.3. Split Tensile Strength
3.2. Hollow Blocks Experimental Test
3.3. Failure Mode
4. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Khan, R.; Jabbar, A.; Ahmad, I.; Khan, W.; Khan, A.N.; Mirza, J. Reduction in environmental problems using rice-husk ash in concrete. Constr. Build. Mater. 2012, 30, 360. [Google Scholar] [CrossRef]
- Eun, O.J.; Monteiro, P.J.M.; Sun, J.S.; Sejin, C.; Clark, S. The evolution of strength and crystalline phasis of alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 2010, 40, 189. [Google Scholar]
- Gencel, O.; Koksal, F.; Ozel, C.; Brostow, W. Combined effect of fly ash and waste ferrochromium on properties of concrete. Constr. Build. Mater. 2012, 29, 633. [Google Scholar] [CrossRef]
- Harja, M.; Barbuta, M.; Gavrilescu, M. Study of morphology for geopolymer materials obtained from fly ash. Environ. Eng. Manag. J. 2009, 8, 1021. [Google Scholar] [CrossRef]
- Zoum, K.S.; Moon, J.; Cho, J.Y.; Kim, J.J. Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Constr. Build. Mater. 2016, 114, 517. [Google Scholar]
- Garg, C.; Khadwal, A. Behavior of ground granulated blast furnace slag and limestone powder as partial cement replacement. Int. J. Eng. Adv. Technol. 2014, 3, 93. [Google Scholar]
- Van, V.T.A.; Rößler, C.; Bui, D.D.; Ludwig, H.M. Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system. Constr. Build. Mater. 2013, 43, 208. [Google Scholar] [CrossRef]
- Kanning, R.; Portella, K.; Braganca, M.; Bonato, M.; dos Santos, J.C.M. Banana leaves ashes as pozzolan for concrete and mortar of Portland cement. Constr. Build. Mater. 2014, 54, 460. [Google Scholar] [CrossRef]
- Yu, X.; Tao, Z.; Song, T.Y.; Pan, Z. Performance of concrete made with steel slag and waste glass. 2016 Constr. Build. Mater. 2016, 114, 737. [Google Scholar] [CrossRef]
- Islam, M.J.; Meherier, M.S.; Rakinul, A.K.M. Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete. Constr. Build. Mater. 2016, 125, 946. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, L.; Xu, J.; Li, Y. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Constr. Build. Mater. 2012, 27, 32. [Google Scholar] [CrossRef]
- Gonzalez-Corominas, A.; Etxeberria, M. Effects of using recycled concrete aggregates on the shrinkage of high performance concrete. Constr. Build. Mater. 2016, 115, 32. [Google Scholar] [CrossRef]
- Helepciuc Gradinaru, C.M.; Barbuta, M.; Serbanoiu, A.A. Characterization of a lightweight concrete with sunflower aggregates. Proc. Manufac. 2018, 22, 154. [Google Scholar] [CrossRef]
- Serbanoiu, A.A.; Barbuta, M.; Burlacu, A.; Gradinaru, C.M. Fly ash cement concrete with fibers-comparative study. Environ. Eng. Manag. J. 2017, 16, 1123. [Google Scholar]
- Barbuta, M.; Marin, E.; Cimpeanu, S.M.; Paraschiv, G.; Lepadatu, D.; Bucur, R.D. Statistical analysis of the tensile strength of coal fly ash concrete with fibers using central composite design. Adv. Mat. Sc. Eng. 2015, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Awada, E.; Mabsoud, M.; Hmad, B.; Farran, M.; Khatib, H. Studies on fiber reinforced concrete using industrial hemp. Constr. Build. Mater. 2012, 35, 710. [Google Scholar] [CrossRef]
- Caroll, J.C.; Helminger, N. Fresh and hardened properties of fiber-reinforced rubber concrete. J. Mater Civ. Eng. 2016, 28, 15. [Google Scholar] [CrossRef]
- Urkhanova, L.; Lkhasaranov, S.; Buiantuev, S. Fiber-reinforced concrete with mineral fibers and nanosilica. Proced. Eng. 2017, 195, 147. [Google Scholar]
- SR EN 197-1:2011 Cement, Part 1: Composition, Specifications and Conformity Criteria for Common Cements; Romanian Standard Association: Bucharest, Romania.
- Timu, A. Effects of Using Additions on the Properties of Concrete; Universitatea Tehnica Gheorghe Asachi: Iasi, Romania, 2018. [Google Scholar]
- SR EN 12390-3: 2011.Testing Hardened Concrete. Part 3: Compressive Strength of Test Specimens; Romanian Standard Association: Bucharest, Romania.
- SR EN 12390-4:2010. Testing Hardened Concrete. Part 6: Flexural Strength of Test Specimens; Romanian Standard Association: Bucharest, Romania.
- SR EN 12390-4:2010. Testing Hardened Concrete. Part 7: Split Tensile Strength of Test Specimens; Romanian Standard Association: Bucharest, Romania.
- SR EN 771-4:2004 Specifications for Masonry. Part 4: Blocks for Masonry of Cellular Aerated Concrete; Romanian Standard Association: Bucharest, Romania.
Concrete Sample | fc N/mm2 | fti N/mm2 | ftd N/mm2 |
---|---|---|---|
Control C0 | 33.45 | 1.82 | 1.72 |
C1 | 25.27 | 1.74 | 1.82 |
C2 | 13.63 | 1.30 | 1.24 |
C3 | 29.80 | 2.01 | 1.94 |
No. | Block | Sizes of Blocks mm | Maximum Compression Force kN | fcb1 N/mm2 | fcb2 N/mm2 | ftb1 N/mm2 | ftb2 N/mm2 |
---|---|---|---|---|---|---|---|
C1 | HBF1 | 240 × 290 × 140 | 815.00 | 11.71 | 14.29 | 4.53 | 1.54 |
C2 | HBF2 | 240 × 290 × 140 | 390.42 | 5.71 | 6.85 | 2.17 | 0.74 |
C3 | HBF3 | 240 × 290 × 140 | 925.21 | 13.3 | 16.21 | 5.13 | 1.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanuseac, L.; Barbuta, M.; Bejan, L.; Rosu, R.; Timu, A. Experimental Study on Hollow Blocks with Wastes. Proceedings 2020, 63, 79. https://doi.org/10.3390/proceedings2020063079
Hanuseac L, Barbuta M, Bejan L, Rosu R, Timu A. Experimental Study on Hollow Blocks with Wastes. Proceedings. 2020; 63(1):79. https://doi.org/10.3390/proceedings2020063079
Chicago/Turabian StyleHanuseac, Ligia, Marinela Barbuta, Liliana Bejan, Raluca Rosu, and Alexandru Timu. 2020. "Experimental Study on Hollow Blocks with Wastes" Proceedings 63, no. 1: 79. https://doi.org/10.3390/proceedings2020063079