Thermoelectric Generator Based on CuSO4 and Na2SiO3 †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The output current and output power depends on the nature of the mixture of substances used.
- The lack of calcium hydroxide in the mixture causes fluctuations in the output current, and too much of it causes the current to decrease.
- Too much silicon dioxide causes the electric current to decrease.
- The optimum operating temperature is around 393 K.
- If an aluminum electrode is used in which a network of holes with a diameter of 0.2 mm is practiced, and it is in an environment with high humidity, then the current generated by the thermoelement increases three times.
Author Contributions
Funding
Conflicts of Interest
References
- Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, economical and environmental impacts of renewable energy systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Zheng, X.F.; Liu, C.X.; Yan, Y.Y.; Wang, Q. A review of thermoelectrics research—Recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energy Rev. 2014, 32, 486–503. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics, an environmentally-friendly source of electrical power. Renew. Energy 1999, 16, 1251–1256. [Google Scholar] [CrossRef]
- Ismail, B.I.; Ahmed, W.H. Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Pat. Electr. Eng. 2009, 2, 27–39. [Google Scholar] [CrossRef]
- Riffat, S.B.; Ma, X. Thermoelectric: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Bulusu, A.; Walker, D.G. Review of electronic transport models for thermoelectric materials. Superlattices Microstruct. 2008, 44, 1–36. [Google Scholar] [CrossRef]
- Elsheikh, M.H.; Shnawah, D.A.; Sabri, M.F.M.; Said, S.B.M.; Hassan, M.H.; Bashir, M.B.A.; Mohamad, M. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew. Sustain. Energy Rev. 2014, 30, 337–355. [Google Scholar] [CrossRef]
- Gould, C.A.; Shammas, N.Y.A.; Grainger, S.; Taylor, I. A comprehensive review of thermoelectric technology, micro-electrical and power generation properties. In Proceedings of the 2008 26th International Conference on Microelectronics, Nis, Serbia, 10–14 May 2008; pp. 329–332. [Google Scholar]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2013, 2, 190–212. [Google Scholar] [CrossRef]
- Telkes, M. The efficiency of thermoelectric generators. I. J. Appl. Phys. 1947, 18, 1116–1127. [Google Scholar] [CrossRef]
- El-Genk, M.S.; Saber, H.H.; Caillat, T. Performance tests of skutterudites and segmented thermoelectric converters. AIP Conf. Proc. 2004, 699, 541–552. [Google Scholar]
- Shi, X.; Yang, J.; Bai, S.; Yang, J.; Wang, H.; Chi, M. On the design of high efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv. Funct. Mater. 2010, 20, 755–763. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Wu, T.; Zhang, W.; Chen, L.; Yang, J. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 2008, 18, 2880–2888. [Google Scholar] [CrossRef]
- Sales, B.C.; Mandrus, D.; Williams, R.K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science 1996, 272, 1325–1328. [Google Scholar] [CrossRef] [PubMed]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.; Dresselhaus, M. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.; Dresselhaus, M. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Borca-Tasciuc, T.; Chen, G.; Liu, J.; Wang, K. Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices. J. Nanosci. Nanotechnol. 2001, 1, 39–42. [Google Scholar] [CrossRef]
- Capinski, W.S.; Maris, H.J. Thermal conductivity of GaAs/AlAs superlattices. Physica B 1996, 219, 699–701. [Google Scholar] [CrossRef]
- Caylor, J.; Coonley, K.; Stuart, J.; Colpitts, T.; Venkatasubramanian, R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 2005, 87, 023105. [Google Scholar] [CrossRef]
- Walia, S.; Balendhran, S.; Nili, H.; Zhuiykov, S.; Rosengarten, G.; Wang, Q.H. Transition metal oxides—Thermoelectric properties. Prog. Mater. Sci. 2013, 58, 1443–1489. [Google Scholar] [CrossRef]
- Liu, S.; Hu, B.; Liu, D.; Li, F.; Li, J.; Li, B.; Li, L.; Nan, Y.L.C. Microthermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Appl. Energy 2018, 225, 600–610. [Google Scholar] [CrossRef]
- Rana, S.; Orr, B.; Iqbal, A.; Ding, L.C.; Akbarzadeh, A.; Date, A. Modelling and optimization of low-temperature waste heat thermoelectric generator system. Energy Procedia 2017, 110, 196–201. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, Y.X. Performance comparison of thermoelectric generators using different materials. Energy Procedia 2019, 158, 1388–1393. [Google Scholar] [CrossRef]
- Omera, G.; Yavuzb, A.H.; Ahiskac, R.; Calisald, K.E. Smart thermoelectric waste heat generator: Design, simulation and cost analysis. Sustain. Energy Technol. Assess. 2020, 37, 100623. [Google Scholar] [CrossRef]
- RMTLtd Thermoelectric Cooling Solutions. Available online: http://www.rmtltd.ru/applications/temicrogenerators (accessed on 5 February 2020).
Properties at 393 K | α (mV/K) | σ (S/m) | λ (W/mK) | ZT | η (%) |
---|---|---|---|---|---|
Graphite/mixture/aluminum | 4.3 | 3.3 | 0.875 | 0.027 | 0.129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chira, M.; Hegyi, A.; Szilagyi, H.; Vermeșan, H. Thermoelectric Generator Based on CuSO4 and Na2SiO3. Proceedings 2020, 63, 35. https://doi.org/10.3390/proceedings2020063035
Chira M, Hegyi A, Szilagyi H, Vermeșan H. Thermoelectric Generator Based on CuSO4 and Na2SiO3. Proceedings. 2020; 63(1):35. https://doi.org/10.3390/proceedings2020063035
Chicago/Turabian StyleChira, Mihail, Andreea Hegyi, Henriette Szilagyi, and Horaţiu Vermeșan. 2020. "Thermoelectric Generator Based on CuSO4 and Na2SiO3" Proceedings 63, no. 1: 35. https://doi.org/10.3390/proceedings2020063035
APA StyleChira, M., Hegyi, A., Szilagyi, H., & Vermeșan, H. (2020). Thermoelectric Generator Based on CuSO4 and Na2SiO3. Proceedings, 63(1), 35. https://doi.org/10.3390/proceedings2020063035