Pharmaceutical Cocrystals—A Review †
Abstract
:1. Introduction
1.1. Cocrystals:
1.2. Comparison of Cocrystal and Salt
1.3. Importance and Design of Pharmaceutical Cocrystal
1.4. Design of Cocrystals:
2. Different Strategies of Cocrystals Formation
2.1. Solid State Methods
2.1.1. Contact Formation
2.1.2. Solid State Grinding
2.1.3. Liquid-Assisted Grinding
2.1.4. Hot Melt Extrusion Technique
2.2. Solution Based Methods
2.2.1. Slurry Crystallization
2.2.2. Evaporative Cocrystallization
2.2.3. Cooling Crystallization
2.2.4. Anti-Solvent Method
2.2.5. Crystallization by Reaction
2.2.6. Ultrasound Aided Cocrystallization
2.2.7. Spray Flash Evaporation Process
2.2.8. Supercritical Fluid Atomization Technique
2.2.9. Spray Drying Technique
2.3. Miscellaneous Cocrystal Preparation
2.3.1. Laser Irradiation
2.3.2. Resonant Acoustic Mixing
2.3.3. Freeze Drying
2.3.4. Electrospray Technology
2.3.5. Microfluidic and Jet Dispensing Approaches
3. Evaluation of Cocrystals
3.1. Spectroscopic Analysis:
3.1.1. Fourier-Transform Infrared Spectroscopy:
3.1.2. Terahertz Time-Domain Spectroscopy:
3.1.3. Solid-State Nuclear Magnetic Resonance:
3.2. Thermal Gravimetry Method:
3.3. Hansen Solubility Study:
3.4. Dissolution Study:
3.5. Stability Study:
4. Conclusions and Future Outlook
Acknowledgments
Conflicts of Interest
References
- Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M.; Dressman, J.B. The Developability Classification System: Application of Biopharmaceutics Concepts to Formulation Development. J. Pharm. Sci. 2010, 99, 4940–4954. [Google Scholar] [CrossRef] [PubMed]
- Shan, N.; Zaworotko, M.J. The role of cocrystals in pharmaceutical science. Drug Discov. Today 2008, 13, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Bagde, S.A.; Upadhye, K.P.; Dixit, G.R.; Bakhle, S.S. Formulation and Evaluation of Cocrystals of Poorly Water Soluble Drug. Int. J. Pharm. Res. 2016, 7, 4988–4997. [Google Scholar]
- Brittain, H.G. Cocrystal systems of pharmaceutical interest: 2010. Cryst. Growth Des. 2011, 12, 1046–1054. [Google Scholar] [CrossRef]
- Jones, W.; Motherwell, W.S.; Trask, A.V. Pharmaceutical cocrystals: An emerging approach to physical property enhancement. MRS Bull. 2006, 31, 875–879. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Fasulo, M.E.; Desper, J. Cocrystal or salt: Does it really matter? Mol. Pharm. 2007, 4, 317–322. [Google Scholar] [CrossRef]
- Pindelska, E.; Sokal, A.; Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv. Drug Deliv. Rev. 2017, 1, 111–146. [Google Scholar] [CrossRef]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef]
- Aakery, C.B.; Salmon, D.J. Building Cocrystals with molecular sense and supramolecular sensibility. Cryst. Eng. Commun. 2005, 7, 439–448. [Google Scholar] [CrossRef]
- Billot, P.; Hosek, P.; Perrin, M.-A. Efficient Purification of an Active Pharmaceutical Ingredient via Cocrystallization: From Thermodynamics to Scale-Up. Org. Process Res. Dev. 2013, 17, 505–511. [Google Scholar] [CrossRef]
- Steed, J. The role of Cocrystals in Pharmaceutical Design. Trends Pharmacol. Sci. 2013, 34, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Blagden, N.; Berry, D.J.; Parkin, A.; Javed, H.; Ibrahim, A.; Gavan, P.T.; De Matos, L.L.; Seaton, C.C. Current directions in Cocrystal growth. New J. Chem. 2008, 32, 1659–1672. [Google Scholar] [CrossRef]
- Saxena, M.; Kuchekar, B.S. Cocrystal Formulation, Characterization, and Evaluation Study. In Proceedings of the International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-20J3), New Deihl, India, 24–26 July 2013; Volume 24, pp. 602–606. [Google Scholar]
- Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev. 2017, 117, 178–195. [Google Scholar] [CrossRef]
- Mohana, M.; Muthiah, P.T.; McMillen, C.D. Supramolecular hydrogen-bonding patterns in 1:1 cocrystals of 5-fluorouracil with 4-methylbenzoic acid and 3-nitrobenzoic acid. Acta Cryst. 2017, 73, 259–263. [Google Scholar] [CrossRef]
- Oswald, I.D.H.; Motherwell, W.D.S.; Parsons, S. Formation of quinol Cocrystals with hydrogen-bond acceptors. Acta Cryst. 2005, 61, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.F.; Jamburi, N.; Anuar, N.; Rahim, S.A.; Rohalim, N.H. Ibuprofen-amino acids Cocrystal screening via co-grinding methods. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 69. [Google Scholar]
- Setyawan, D.; Sari, R.; Yusuf, H.; Primaharinastiti, R. Preparation and Characterization of Artesunate-Nicotinamide Cocrystal by Solvent Evaporation and Slurry Method. Asian J. Pharm. Clin. Res. 2014, 7, 62–65. [Google Scholar]
- Chadha, R.; Bhalla, Y.; Vashisht, M.; Chadha, K. Cocrystallization in Nutraceuticals. In Recrystallization in Materials Processing; Intech Open: London, UK, 2015. [Google Scholar]
- Jayasankar, A.; Good, D.J.; Rodríguez-Hornedo, N. Mechanisms by which moisture generates Cocrystals. Mol. Pharm. 2007, 4, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nanda, A. Approaches to Design of Pharmaceutical Cocrystals: A Review. Mol. Cryst. Liquid Cryst. 2018, 667, 54–77. [Google Scholar] [CrossRef]
- Friscic, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9, 1621–1637. [Google Scholar] [CrossRef]
- Li, S.; Yu, T.; Tian, Y.; Lagan, C.; Jones, D.S.; Andrews, G.P. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Enhancing Cocrystal Yield. Mol. Pharm. 2017, 15, 3741–3754. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, K.; Davey, R.; Sadiq, G.; Cross, W.; Pritchard, R. The utility of a ternary phase diagram in the discovery of new cocrystal forms. Cryst Eng Comm 2009, 11, 412–414. [Google Scholar] [CrossRef]
- Desai, H.; Rao, L.; Amin, P. Carbamazepine Cocrystals by Solvent Evaporation Technique: Formulation and Characterization Studies. Am. J. Pharm. Res. 2018, 2, 4. [Google Scholar]
- Ober, C.A.; Gupta, R.B. Formation of Itraconazole–Succinic Acid Cocrystals by Gas Antisolvent Cocrystallization. AAPS PharmSciTech 2012, 13, 1396–1406. [Google Scholar] [CrossRef]
- Rodríguez-Hornedo, N.; Nehm, S.J.; Seefeldt, K.F.; Pagan-Torres, Y.; Falkiewicz, C.J. Reaction crystallization of pharmaceutical molecular complexes. Mol. Pharm. 2006, 3, 362–367. [Google Scholar] [CrossRef]
- Padrela, L.; Rodrigues, M.A.; Tiago, J.; Velaga, S.P.; Matos, H.A.; de Azevedo, E.G. Insight into the Mechanisms of Cocrystallization of Pharmaceuticals in Supercritical Solvents. Cryst. Growth Des. 2015, 15, 3175–3181. [Google Scholar] [CrossRef]
- Vehring, R. Pharmaceutical particle engineering via spray-drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef]
- Titapiwatanakun, V.; Basit, A.W.; Gaisford, S. A New Method for Producing Pharmaceutical Cocrystals: Laser Irradiation of Power Blends. Cryst. Growth. 2016, 16, 3307–3312. [Google Scholar] [CrossRef]
- Chaudhary S, Nikam S, Khatri N, Wakde S, Co-Crystals: A review. J. Drug. Deliv. Ther. 2018, 8, 350–358.
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Cryst. Growth Des. 2018, 18, 6370–6387. [Google Scholar] [CrossRef]
- Athira, A.; Anu, S.; Thaifa, M. A Review on Pharmaceutical Cocrystals. Int. J. Pharm. Res. Scholars 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Yadav, B.; Khusrsheed, A.; Sinh, R. Cocrystals: A Complete Review on Conventional and Novel Methods of its Formation and its Evaluation. Asian J. Pharm. Clin. Res. 2019, 12, 68–74. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buddhadev, S.S.; Garala, K.C. Pharmaceutical Cocrystals—A Review. Proceedings 2020, 62, 14. https://doi.org/10.3390/proceedings2020062014
Buddhadev SS, Garala KC. Pharmaceutical Cocrystals—A Review. Proceedings. 2020; 62(1):14. https://doi.org/10.3390/proceedings2020062014
Chicago/Turabian StyleBuddhadev, Sheetal S., and Kevin C. Garala. 2020. "Pharmaceutical Cocrystals—A Review" Proceedings 62, no. 1: 14. https://doi.org/10.3390/proceedings2020062014
APA StyleBuddhadev, S. S., & Garala, K. C. (2020). Pharmaceutical Cocrystals—A Review. Proceedings, 62(1), 14. https://doi.org/10.3390/proceedings2020062014