Assessment of Negative Factors Affecting the Intestinal Microbiota in People with Excessive Body Mass Compared to People with Normal Body Mass †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Kosnicki, K.L.; Penprase, J.C.; Cintora, P.; Torres, P.J.; Harris, G.L.; Brasser, S.M.; Kelley, S.T. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome. Addict. Biol. 2019, 24, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef] [PubMed]
- Bressa, C.; Bailén-Andrino, M.; Pérez-Santiago, J.; González-Soltero, R.; Pérez, M.; Montalvo-Lominchar, M.G.; Maté-Muñoz, J.L.; Domínguez, R.; Moreno, D.; Larrosa, M. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE 2017, 12, e0171352. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L.; Kim, H.N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Słaby, D.; Szewczyk, S.; Beberok, A.; Wrześniok, D. The role of protective agents in pharmacotherapy—Assessment of patients awareness [Rola preparatów osłonowych w farmakoterapii—Ocena świadomości pacjentów]. Farm Pol. 2019, 75, 591–598. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vila, A.V.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Macke, L.; Schulz, C.; Koletzko, L.; Malfertheiner, P. Systematic review: The effects of proton pump inhibitors on the microbiome of the digestive tract—Evidence from next-generation sequencing studies. Aliment. Pharmacol. Ther. 2020, 51, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Maseda, D.; Ricciotti, E. NSAID-Gut Microbiota Interactions. Front. Pharmacol. 2020, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Database on Body Mass Index. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 16 October 2020).
- Sowa, P.; Pędziński, B.; Krzyżak, M.; Maślach, D.; Wójcik, S.; Szpak, A. The Computer-Assisted Web Interview Method as Used in the National Study of ICT Use in Primary Healthcare in Poland—Reflections on a Case Study. Stud. Log. Gramm. Rhetor. 2015, 43, 137–146. [Google Scholar] [CrossRef]
Characteristics of Group | E-BMI Group (n = 538) (%) | N-BMI Group (n = 582) (%) |
---|---|---|
Gender | ||
Female | 474 (88.1) | 553 (95) |
Male | 64 (11.9) | 29 (5) |
Age (years) | ||
18–24 | 50 (9.3) | 101 (17.4) |
25–34 | 218 (40.5) | 279 (47.9) |
35–44 | 169 (31.4) | 149 (25.6) |
45–54 | 72 (13.4) | 36 (6.2) |
55–65 | 29 (5.4) | 17 (2.9) |
Education level | ||
Primary | 5 (0.9) | 7 (1.2) |
Lower secondary | 24 (4.5) | 18 (3.1) |
Upper secondary | 136 (25.3) | 114 (19.6) |
Student | 45 (8.4) | 71 (12.2) |
Higher | 308 (57.2) | 348 (59.8) |
PhD Student | 4 (0.7) | 5 (0.9) |
PhD or higher | 16 (3) | 19 (3.2) |
Economic situation | ||
Very Bad | 8 (1.5) | 3 (0.5) |
Bad | 13 (2.4) | 20 (3.4) |
Moderate | 253 (47) | 232 (39.9) |
Good | 214 (39.8) | 282 (48.5) |
Very good | 50 (9.3) | 45 (7.7) |
E-BMI (n = 538) (%) | N-BMI (n = 582) (%) | p-Value | |
---|---|---|---|
Level of physical activity | |||
Sedentary | 239 (44.4) | 177 (30.4) | <0.0001 |
Moderate | 273 (50.8) | 345 (59.3) | |
High | 26 (4.8) | 60 (10.3) | |
Cigarette smoking | |||
Not smoking | 324 (60.2) | 393 (67.6) | 0.0356 |
Has smoked in the past | 92 (17.1) | 81 (13.9) | |
<5 cigarettes a day | 30 (5.6) | 28 (4.8) | |
5–20 cigarettes a day | 83 (15.4) | 78 (13.4) | |
>20 cigarettes a day | 9 (1.7) | 2 (0.3) | |
Alcohol | |||
No | 184 (34.2) | 220 (37.8) | 0.4440 |
Less often than once a week | 213 (39.6) | 237 (40.7) | |
1–2 times a week | 106 (19.7) | 94 (16.2) | |
3–4 times a week | 27 (5) | 24 (4.1) | |
5 times a week or more | 8 (1.5) | 7 (1.2) | |
Stress | |||
No | 22 (4.1) | 24 (4.1) | 0.2259 |
Less often than once a week | 104 (19.3) | 137 (23.5) | |
1–2 times a week | 148 (27.5) | 174 (29.9) | |
3–4 times a week | 130 (24.2) | 118 (20.3) | |
5 times a week or more | 134 (24.9) | 129 (22.2) | |
Diagnosis of the disease | |||
Not diagnosed | 350 (60.1) | 289 (49.7) | 0.0004 |
Diagnosed | 232 (39.9) | 293 (50.3) | |
NSAID drugs | |||
I do not take | 82 (15.2) | 101 (17.4) | 0.2580 |
Once a month or less | 194 (36.1) | 223 (38.1) | |
Few times a month | 171 (31.9) | 175 (30.1) | |
Once a week | 25 (4.6) | 26 (4.5) | |
Few times a week | 43 (8) | 33 (5.7) | |
Once a day | 18 (3.3) | 12 (2.1) | |
More than once a day | 5 (0.9) | 12 (2.1) | |
PPI drugs | |||
I do not take | 398 (74) | 472 (81.1) | 0.0337 |
Once a month or less | 40 (7.4) | 32 (5.5) | |
Few times a month | 27 (5) | 21 (3.6) | |
Once a week | 4 (0.7) | 2 (0.3) | |
Few times a week | 12 (2.2) | 11 (1.9) | |
Once a day | 53 (10) | 34 (5.9) | |
More than once a day | 4 (0.7) | 10 (1.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osowiecka, K.; Pokorna, N.; Skrypnik, D. Assessment of Negative Factors Affecting the Intestinal Microbiota in People with Excessive Body Mass Compared to People with Normal Body Mass. Proceedings 2020, 61, 5. https://doi.org/10.3390/IECN2020-07010
Osowiecka K, Pokorna N, Skrypnik D. Assessment of Negative Factors Affecting the Intestinal Microbiota in People with Excessive Body Mass Compared to People with Normal Body Mass. Proceedings. 2020; 61(1):5. https://doi.org/10.3390/IECN2020-07010
Chicago/Turabian StyleOsowiecka, Karolina, Natalia Pokorna, and Damian Skrypnik. 2020. "Assessment of Negative Factors Affecting the Intestinal Microbiota in People with Excessive Body Mass Compared to People with Normal Body Mass" Proceedings 61, no. 1: 5. https://doi.org/10.3390/IECN2020-07010
APA StyleOsowiecka, K., Pokorna, N., & Skrypnik, D. (2020). Assessment of Negative Factors Affecting the Intestinal Microbiota in People with Excessive Body Mass Compared to People with Normal Body Mass. Proceedings, 61(1), 5. https://doi.org/10.3390/IECN2020-07010