Design and Optimization of a Rapid, Multiplex miRNA Assay without Washing Steps †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Design of the Assay
3.2. Modelling of Assay Performance
3.3. Specificity
3.4. Experimental Validation
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. MicroRNA: Function, Detection, and Bioanalysis. Chem. Rev. 2013, 113, 6207–6233. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Linnstaedt, S.; Palma, J.; Park, J.C.; Ntrivalas, E.; Kwak-Kim, J.Y.H.; Gilman-Sachs, A.; Beaman, K.; Hastings, M.L.; Martin, J.N.; et al. Plasma Components Affect Accuracy of Circulating Cancer-Related MicroRNA Quantitation. J. Mol. Diagn. 2012, 14, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Campomenosi, P.; Gini, E.; Noonan, D.M.; Poli, A.; D’Antona, P.; Rotolo, N.; Dominioni, L.; Imperatori, A. A Comparison between Quantitative PCR and Droplet Digital PCR Technologies for Circulating MicroRNA Quantification in Human Lung Cancer. BMC Biotechnol. 2016, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.N.; Mutharasan, R. Biosensor-Based MicroRNA Detection: Techniques, Design, Performance, and Challenges. Analyst 2014, 139, 1576. [Google Scholar] [CrossRef] [PubMed]
- Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging Applications of Label-Free Optical Biosensorsz. Nanophotonics 2017, 6. [Google Scholar] [CrossRef]
- Giavazzi, F.; Salina, M.; Cerbino, R.; Bassi, M.; Prosperi, D.; Ceccarello, E.; Damin, F.; Sola, L.; Rusnati, M.; Chiari, M.; et al. Multispot, Label-Free Biodetection at a Phantom Plastic-Water Interface. Proc. Natl. Acad. Sci. USA 2013, 110, 9350–9355. [Google Scholar] [CrossRef] [PubMed]
- Salina, M.; Giavazzi, F.; Lanfranco, R.; Ceccarello, E.; Sola, L.; Chiari, M.; Chini, B.; Cerbino, R.; Bellini, T.; Buscaglia, M. Multi-Spot, Label-Free Immunoassay on Reflectionless Glass. Biosens. Bioelectron. 2015, 74, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Boguslawski, S.J.; Smith, D.E.; Michalak, M.A.; Mickelson, K.E.; Yehle, C.O.; Patterson, W.L.; Carrico, R.J. Characterization of Monoclonal Antibody to DNA · RNA and Its Application to Immunodetection of Hybrids. J. Immunol. Methods 1986, 89, 123–130. [Google Scholar] [CrossRef]
- Sguassero, A.; Artiga, Á.; Morasso, C.; Jimenez, R.R.; Rapún, R.M.; Mancuso, R.; Agostini, S.; Hernis, A.; Abols, A.; Linē, A.; et al. A Simple and Universal Enzyme-Free Approach for the Detection of Multiple MicroRNAs Using a Single Nanostructured Enhancer of Surface Plasmon Resonance Imaging. Anal. Bioanal. Chem. 2019, 411, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, G.; Faoro, V.; Rizzo, S.; Sblattero, D.; Saccani, A.; Riccio, G.; Bellini, T.; Salina, M.; Buscaglia, M.; Marcello, A. A Label-Free Immunoassay for Flavivirus Detection by the Reflective Phantom Interface Technology. Biochem. Biophys. Res. Commun. 2017, 49, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Nava, G.; Ceccarello, E.; Giavazzi, F.; Salina, M.; Damin, F.; Chiari, M.; Buscaglia, M.; Bellini, T.; Zanchetta, G. Label-Free Detection of DNA Single-Base Mismatches Using a Simple Reflectance-Based Optical Technique. Phys. Chem. Chem. Phys. 2016, 18, 13395–13402. [Google Scholar] [CrossRef] [PubMed]
- Vanjur, L.; Carzaniga, T.; Casiraghi, L.; Chiari, M.; Zanchetta, G.; Buscaglia, M. Non-Langmuir Kinetics of DNA Surface Hybridization. Biophys. J. 2020, 119, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- miRBase. Available online: http://www.mirbase.org/ (accessed on 29 September 2020).
- Zanchetta, G.; Carzaniga, T.; Vanjur, L.; Casiraghi, L.; Tagliabue, G.; Morasso, C.; Bellini, T.; Buscaglia, M. Design of a Rapid, Multiplex, Homogeneous MiRNA Assay Optimized by Label-Free Analysis. Biosens. Bioelectron. 2021, 172, 112751. [Google Scholar] [CrossRef] [PubMed]
- Li, B.S.; Zhao, Y.L.; Guo, G.; Li, W.; Zhu, E.D.; Luo, X.; Mao, X.H.; Zou, Q.M.; Yu, P.W.; Zuo, Q.F.; et al. Plasma MicroRNAs, MiR-223, MiR-21 and MiR-218, as Novel Potential Biomarkers for Gastric Cancer Detection. PLoS ONE 2012, 7, e41629. [Google Scholar] [CrossRef] [PubMed]
- Maryam, M.; Chaleshtori, M.H.; Ghasemi, S.; Mokarian, F. Plasma Level of Mir-21 and Mir-451 in Primary and Recurrent Breast Cancer Patients. Breast Cancer Targets Ther. 2019, 11, 293–301. [Google Scholar] [CrossRef]
- Wright, K.; de Silva, K.; Purdie, A.C.; Plain, K.M. Comparison of Methods for MiRNA Isolation and Quantification from Ovine Plasma. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- D’Agata, R.; Spoto, G. Advanced Methods for MicroRNA Biosensing: A Problem-Solving Perspective. Anal. Bioanal. Chem. 2019, 411, 4425–4444. [Google Scholar] [CrossRef] [PubMed]
- Šípová, H.; Zhang, S.; Dudley, A.M.; Galas, D.; Wang, K.; Homola, J. Surface Plasmon Resonance Biosensor for Rapid Label-Free Detection of Microribonucleic Acid at Subfemtomole Level. Anal. Chem. 2010, 82, 10110–10115. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yan, Y.; Li, S.; Zhang, Y.; Cheng, W.; Cheng, Q.; Ding, S. Surface Plasmon Resonance Biosensor for Highly Sensitive Detection of MicroRNA Based on DNA Super-Sandwich Assemblies and Streptavidin Signal Amplification. Anal. Chim. Acta 2015, 874, 59–65. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence | nt |
---|---|---|
miRNA21 (hsa-miR-21-5p) | UAGCUUAUCAGACUGAUGUUGA | 22 |
miRNA223 (hsa-miR-223-3p) | UGUCAGUUUGUCAAAUACCCCA | 22 |
miRNA16 (hsa-miR-16-5p) | UAGCAGCACGUAAAUAUUGGCG | 22 |
miRNA125 (hsa-miR-125a-5p) | UCCCUGAGACCCUUUAACCUGUGA | 24 |
miRNA210 (hsa-miR-210-3p) | CUGUGCGUGUGACAGCGGCUGA | 22 |
Target | Surface Probe | Kd(nM) | koff(10−4 s−1) | kon(104 M−1 s−1) | Max Amplification |
---|---|---|---|---|---|
miRNA21 | DNA21 | 11.6 | 1.4 | 1.2 | 1 |
miRNA223 | DNA223 | 9.0 | 8.3 | 9.2 | 1 |
miRNA16 | DNA16 | 4.8 | 4.2 | 8.9 | 1 |
miRNA125 | DNA125 | 2.6 | 4.3 | 16.5 | 1 |
miRNA210 | DNA210 | 5.8 | 1.6 | 2.8 | 1 |
Ab1 | DNA-RNA | 0.27 | 0.2 | 7.4 | 21 ± 0.7 |
Ab2 | Ab1 | 18.0 | 10.5 | 15.6 | 168 ± 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanchetta, G.; Carzaniga, T.; Vanjur, L.; Casiraghi, L.; Tagliabue, G.; Morasso, C.; Bellini, T.; Buscaglia, M. Design and Optimization of a Rapid, Multiplex miRNA Assay without Washing Steps. Proceedings 2020, 60, 32. https://doi.org/10.3390/IECB2020-07040
Zanchetta G, Carzaniga T, Vanjur L, Casiraghi L, Tagliabue G, Morasso C, Bellini T, Buscaglia M. Design and Optimization of a Rapid, Multiplex miRNA Assay without Washing Steps. Proceedings. 2020; 60(1):32. https://doi.org/10.3390/IECB2020-07040
Chicago/Turabian StyleZanchetta, Giuliano, Thomas Carzaniga, Luka Vanjur, Luca Casiraghi, Giovanni Tagliabue, Carlo Morasso, Tommaso Bellini, and Marco Buscaglia. 2020. "Design and Optimization of a Rapid, Multiplex miRNA Assay without Washing Steps" Proceedings 60, no. 1: 32. https://doi.org/10.3390/IECB2020-07040
APA StyleZanchetta, G., Carzaniga, T., Vanjur, L., Casiraghi, L., Tagliabue, G., Morasso, C., Bellini, T., & Buscaglia, M. (2020). Design and Optimization of a Rapid, Multiplex miRNA Assay without Washing Steps. Proceedings, 60(1), 32. https://doi.org/10.3390/IECB2020-07040