Reduced Graphene Oxide on Screen-Printed Carbon Electrodes as Biosensor for Escherichia coli O157:H7 Detection †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Preparation of GO, rGO, and IgG/rGO Electrodes
2.4. Characterization
2.4.1. Linear Sweep Voltammetry (LSV) Measurements
2.4.2. Field Emission Scanning Electron Microscopy
3. Results and Discussion
3.1. Linear Sweep Voltammetry for Bare SPCEs, GO/SPCEs, rGO/SPCEs, and IgG/rGO/SPCEs
3.2. LSVs at Different E. coli Concentrations
3.3. Morphology of IgG/rGO/SPCEs and rGO/SPCEs Incubated with E. coli O157:H7
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaafar, A.S.; Sidek, L.M.; Basri, H.; Zahari, N.M.; Jajarmizadeh, M.; Noor, H.M.; Osman, S.; Mohammad, A.H.; Azad, W.H. An Overview: Flood Catastrophe of Kelantan Watershed in 2014; Springer: Singapore, 2016; pp. 17–29. [Google Scholar]
- Madaeni, S.S. Microfiltration (MF). In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin, Heidelberg, 2015; pp. 1–3. [Google Scholar]
- Zhu, B.; Clifford, D.A.; Chellam, S. Virus removal by iron coagulation–microfiltration. Water Res. 2005, 39, 5153–5161. [Google Scholar] [CrossRef] [PubMed]
- Kosack, C.S.; Page, A.-L.; Klatser, P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017, 95, 639. [Google Scholar] [CrossRef] [PubMed]
- Byrne, B.; Stack, E.; Gilmartin, N.; O’Kennedy, R. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors 2009, 9, 4407–4445. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.H.; Salter, G.; Kahn, S.L.; Gindt, Y.M. Redox titration of ferricyanide to ferrocyanide with ascorbic acid: Illustrating the Nernst equation and Beer–Lambert law. J. Chem. Educ. 2007, 84, 1461. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Fundamentals and applications. Electrochem. Methods 2001, 2, 580–632. [Google Scholar]
- Shi, J.; Claussen, J.C.; McLamore, E.S.; ul Haque, A.; Jaroch, D.; Diggs, A.R.; Calvo-Marzal, P.; Rickus, J.L.; Porterfield, D.M. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 2011, 22, 355502. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Azman, N.Z.M.; Zainal, P.N.S.; Alang Ahmad, S.A. Enhancement the electrochemical conductivity of a modified reduced graphene oxide/calixarene screen-printed electrode using response surface methodology. PLoS ONE 2020, 15, e0234148. [Google Scholar] [CrossRef] [PubMed]
- Gutić, S.J.; Kozlica, D.K.; Korać, F.; Bajuk-Bogdanović, D.; Mitrić, M.; Mirsky, V.M.; Mentus, S.V.; Pašti, I.A. Electrochemical tuning of capacitive response of graphene oxide. Phys. Chem. Chem. Phys. 2018, 20, 22698–22709. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, M.N.; Santhiago, M.; Maroneze, C.M.; Silva, C.C.; Timm, R.A.; Kubota, L.T. Tuning the electrochemical reduction of graphene oxide: Structural correlations towards the electrooxidation of nicotinamide adenine dinucleotide hydride. Electrochim. Acta 2016, 197, 194–199. [Google Scholar] [CrossRef]
- Ambrosi, A.; Pumera, M. Precise tuning of surface composition and electron-transfer properties of graphene oxide films through electroreduction. Chem. -A Eur. J. 2013, 19, 4748–4753. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B. Electrical conductivity of proteins. Nature 1962, 193, 364–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shao, J.; Jiang, S.; Wang, B.; Zheng, Y. Structure-dependent electrical conductivity of protein: Its differences between alpha-domain and beta-domain structures. Nanotechnology 2015, 26, 125702. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Y.; Chen, J. Heterogeneous electron transfer at nanoscopic electrodes: Importance of electronic structures and electric double layers. Chem. Soc. Rev. 2014, 43, 372–5386. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Das, S.K. Bio-reduced graphene oxide as a nanoscale antimicrobial coating for medical devices. ACS Omega 2019, 4, 387–397. [Google Scholar] [CrossRef]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Piao, J.-G.; Auletta, J.; Hu, K.; Zhu, Y.; Meyer, T.; Liu, H.; Yang, L. Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces 2014, 6, 13183–13190. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barthasarathy, P.R.; Ahmed, N.A.; Salim, W.W.A.W. Reduced Graphene Oxide on Screen-Printed Carbon Electrodes as Biosensor for Escherichia coli O157:H7 Detection. Proceedings 2020, 60, 13. https://doi.org/10.3390/IECB2020-07056
Barthasarathy PR, Ahmed NA, Salim WWAW. Reduced Graphene Oxide on Screen-Printed Carbon Electrodes as Biosensor for Escherichia coli O157:H7 Detection. Proceedings. 2020; 60(1):13. https://doi.org/10.3390/IECB2020-07056
Chicago/Turabian StyleBarthasarathy, Piravin Raj, Nasteho Ali Ahmed, and Wan Wardatul Amani Wan Salim. 2020. "Reduced Graphene Oxide on Screen-Printed Carbon Electrodes as Biosensor for Escherichia coli O157:H7 Detection" Proceedings 60, no. 1: 13. https://doi.org/10.3390/IECB2020-07056
APA StyleBarthasarathy, P. R., Ahmed, N. A., & Salim, W. W. A. W. (2020). Reduced Graphene Oxide on Screen-Printed Carbon Electrodes as Biosensor for Escherichia coli O157:H7 Detection. Proceedings, 60(1), 13. https://doi.org/10.3390/IECB2020-07056