Virtual Screening of Compounds by Chemoinformatics Tools in the Chemistry Labs †
Abstract
:1. Introduction
2. Theoretical Models and Relationships
2.1. Global Reactivity Parameters
2.2. Local Reactivity Parameters
2.3. Redox Potentials
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pirvu, L.; Stefaniu, A.; Neagu, G.; Albu, B.; Pintilie, L. In Vitro Cytotoxic and Antiproliferative Activity of Cydonia oblonga flower petals, leaf and fruit pellet ethanolic extracts. Docking simulation of the active flavonoids on anti-apoptotic protein Bcl-2. Open Chem. 2018, 16, 591–604. [Google Scholar] [CrossRef]
- Stefaniu, A. Introductory Chapter: Molecular Docking and Molecular Dynamics techniques to achieve rational drug design. In Molecular Docking and Molecular Dynamics; Stefaniu, A., Ed.; IntechOpen: London, UK, 2019; pp. 1–3. [Google Scholar]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P.; et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Petkova, N.I.; Nikolova, R.D.; Kostov, K.L.; Mineva, T.; Vayssilov, G.N. Theoretical and Experimental Local Reactivity Parameters of 3-substituted Coumarin Derivatives. J. Phys. Chem. A 2014, 118, 11062–11073. [Google Scholar] [CrossRef] [PubMed]
- Stefaniu, A.; Pop, M.-D.; Arnold, G.-L.; Birzan, L.; Pintilie, L.; Diacu, E.; Ungureanu, E.-M. DFT calculations and electrochemical studies on azulene ligands for heavy metal ions detection using chemically modified electrodes. J. Electrochem. Sci. Eng. 2018, 1, 73–85. [Google Scholar] [CrossRef]
- Bredas, J.L.; Silbey, R.; Boudreux, D.S.; Chance, R.R. Chain-length dependence of electronic and electrochemical properties of conjugated systems: Polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 1983, 105, 6555–6559. [Google Scholar] [CrossRef]
- Leonat, L.; Sbârcea, G.; Brânzoi, I.V. Cyclic voltammetry for energy levels estimation of organic materials. U.P.B. Sci. Bull. B 2013, 75, 111–118. [Google Scholar]
- Kucur, E.; Riegler, J.; Urban, G.A.; Nann, T. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J. Chem. Phys. 2003, 119, 2333–2337. [Google Scholar] [CrossRef]
- Brus, L.E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571. [Google Scholar] [CrossRef]
- von Eschwege, K.G.; Conradie, J. Redox Potentials of Ligands and Complexes—A DFT Approach. S. Afr. J. Chem. 2011, 64, 203–209. [Google Scholar]
- Méndez-Hernández, D.D.; Tarakeshwar, P.; Gust, D.; Moore, T.A.; Moore, A.L.; Mujica, V. Simple and Accurate Correlation of Experimental Redox Potentials and DFT-calculated HOMO/LUMO Energies of Polycyclic Aromatic Hydrocarbons. J. Mol. Model. 2013, 19, 2845–2848. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefaniu, A.; Pirvu, L.; Ungureanu, E.-M.; Birzan, L.; Stanciu, G.; Enache, L.-B.; Anastasoaie, V. Virtual Screening of Compounds by Chemoinformatics Tools in the Chemistry Labs. Proceedings 2020, 55, 9. https://doi.org/10.3390/proceedings2020055009
Stefaniu A, Pirvu L, Ungureanu E-M, Birzan L, Stanciu G, Enache L-B, Anastasoaie V. Virtual Screening of Compounds by Chemoinformatics Tools in the Chemistry Labs. Proceedings. 2020; 55(1):9. https://doi.org/10.3390/proceedings2020055009
Chicago/Turabian StyleStefaniu, Amalia, Lucia Pirvu, Eleonora-Mihaela Ungureanu, Liviu Birzan, Gabriela Stanciu, Laura-Bianca Enache, and Veronica Anastasoaie. 2020. "Virtual Screening of Compounds by Chemoinformatics Tools in the Chemistry Labs" Proceedings 55, no. 1: 9. https://doi.org/10.3390/proceedings2020055009
APA StyleStefaniu, A., Pirvu, L., Ungureanu, E. -M., Birzan, L., Stanciu, G., Enache, L. -B., & Anastasoaie, V. (2020). Virtual Screening of Compounds by Chemoinformatics Tools in the Chemistry Labs. Proceedings, 55(1), 9. https://doi.org/10.3390/proceedings2020055009