Regression Tree Based Explanation for Anomaly Detection Algorithm †
Abstract
:1. Introduction
2. Methodology
3. Experimental Results
4. Discussion and Conclusions
Supplementary Materials
Funding
Acknowledgments
References
- Liu, F.T.; Ting, K.; Zhou, Z. Isolation-Based Anomaly Detection. TKDD 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Lu, Y.C.; Chen, F.; Wang, Y.; Lu, C.T. Discovering anomalies on mixed-type data using a generalized student-t based approach. IEEE Trans. Knowl. Data Eng. 2016, 10, 2582–2595. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar]
- High Level Expert Group on Artificial Intelligence. Ethics Guidelines on Trustworthy Artificial Intelligence. 2019. Available online: https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai (accessed on 1 July 2020).
- Eiras-Franco, C.; Martínez-Rego, D.; Guijarro-Berdiñas, B.; Alonso-Betanzos, A.; Bahamonde, A. Large Scale Anomaly Detection in Mixed Numerical and Categorical Input Spaces. Inf. Sci. 2019, 487, 115–127. [Google Scholar]
- Eiras-Franco, C.; Guijarro-Berdiñas, B.; Alonso-Betanzos, A.; Bahamonde, A. A scalable decision-tree-based method to explain interactions in dyadic data. Decis. Support Syst. 2019, 127, 113141. [Google Scholar]
Dataset | AUC | Explanation | ||||||
---|---|---|---|---|---|---|---|---|
Name | OV | Tree | WV | NV | ||||
ISCXIDS 2012 | 0.105 | 0.919 ± 0.02 | F | −0.062 | 0.048 | 29 | 142 | |
P | −0.051 | 0.049 | 7 | 25 | ||||
KDDCup99 - FULL | 0.049 | 0.758 ± 0.05 | F | −0.147 | 0.011 | 28 | 136 | |
P | −0.032 | 0.012 | 6 | 20 | ||||
KDDCup99 - SMTP | 2.846 | 0.980 ± 0.01 | F | −0.105 | 3.630 | 22 | 105 | |
P | −0.005 | 6.632 | 3 | 5 | ||||
KDDCup99 - HTTP | 0.843 | 0.992 ± 0.01 | F | −0.898 | 0.831 | 15 | 67 | |
P | −0.842 | 0.837 | 3 | 5 | ||||
KDDCup99 - 10 | 2.454 | 0.966 ± 0.02 | F | −1.320 | 1.227 | 20 | 93 | |
P | −1.247 | 1.228 | 6 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botana, I.L.-R.; Eiras-Franco, C.; Alonso-Betanzos, A. Regression Tree Based Explanation for Anomaly Detection Algorithm. Proceedings 2020, 54, 7. https://doi.org/10.3390/proceedings2020054007
Botana IL-R, Eiras-Franco C, Alonso-Betanzos A. Regression Tree Based Explanation for Anomaly Detection Algorithm. Proceedings. 2020; 54(1):7. https://doi.org/10.3390/proceedings2020054007
Chicago/Turabian StyleBotana, Iñigo López-Riobóo, Carlos Eiras-Franco, and Amparo Alonso-Betanzos. 2020. "Regression Tree Based Explanation for Anomaly Detection Algorithm" Proceedings 54, no. 1: 7. https://doi.org/10.3390/proceedings2020054007
APA StyleBotana, I. L. -R., Eiras-Franco, C., & Alonso-Betanzos, A. (2020). Regression Tree Based Explanation for Anomaly Detection Algorithm. Proceedings, 54(1), 7. https://doi.org/10.3390/proceedings2020054007